Hostname: page-component-599cfd5f84-5kswg Total loading time: 0 Render date: 2025-01-07T05:55:36.777Z Has data issue: false hasContentIssue false

Estimation of aerodynamic parameters near stall using maximum likelihood and extreme learning machine-based methods

Published online by Cambridge University Press:  23 October 2020

H.O. Verma*
Affiliation:
Department of Aerospace Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
N.K. Peyada*
Affiliation:
Department of Aerospace Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India

Abstract

The stability and control derivatives are essential parameters in the flight operation of aircraft, and their determination is a routine task using classical parameter estimation methods based on maximum likelihood and least-squares principles. At high angle-of-attack, the unsteady aerodynamics may pose difficulty in aerodynamic structure determination, hence data-driven methods based on artificial neural networks could be an alternative choice for building models to characterise the behaviour of the system based on the measured motion and control variables. This research paper investigates the feasibility of using a recurrent neural model based on an extreme learning machine network in the modelling of the aircraft dynamics in a restricted sense for identification of the aerodynamic parameters. The recurrent extreme learning machine network is combined with the Gauss–Newton method to optimise the unknowns of the postulated aerodynamic model. The efficacy of the proposed estimation algorithm is studied using real flight data from a quasi-steady stall manoeuvre. Furthermore, the estimates are validated against the parameters estimated using the maximum likelihood method. The standard deviations of the estimates demonstrate the effectiveness of the proposed algorithm. Finally, the quantities regenerated using the estimates present good agreement with their corresponding measured values, confirming that a qualitative estimation can be obtained using the proposed estimation algorithm.

Type
Research Article
Copyright
© The Author(s), 2020. Published by Cambridge University Press on behalf of Royal Aeronautical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Hamel, P.G. and Jategaonkar, R.V. Evolution of flight vehicle system identification, J Aircr 1996, 33, (1), pp 928. doi: 10.2514/3.46898 CrossRefGoogle Scholar
Jategaonkar, R.V. Flight Vehicle System Identification: A Time Domain Methodology; 1st ed., vol. 216, Progress in Astronautics and Aeronautics, AIAA, 2006, Reston, VA. doi: 10.2514/4.866852 CrossRefGoogle Scholar
Raol, R, Jitendra, G.G. and Singh, J. Modelling and Parameter Estimation of Dynamic System, IET, 2004, London, UK.CrossRefGoogle Scholar
Pamadi, B.N. Performance, Stability, Dynamics and Control of Airplanes, AIAA Education Series, 1998, Virginia.Google Scholar
Filippone, A. Flight Performance of Fixed and Rotary Wing Aircraft, Elsevier, 2006, Oxford, UK.CrossRefGoogle Scholar
Ghoreyshi, M. and Cummings, R.M. Challenges in the aerodynamics modeling of an oscillating and translating airfoil at large incidence angles, J Aerosp Sci Technol 2013, 28, (1), pp 176190. doi: 10.1016/j.ast.2012.10.013.CrossRefGoogle Scholar
Kyle, H., Lowenberg, M. and Greenwell, D. Comparative evaluation of unsteady aerodynamic modeling approaches, AIAA Paper 2004-5272, August 2004. doi: 10.2514/6.2004-5272 CrossRefGoogle Scholar
Greenwell, D. A review of unsteady aerodynamic modeling for flight dynamics of manoeuvrable aircraft. AIAA Paper 2004-5276; August 2004. doi: 10.2514/6.2004-5276 CrossRefGoogle Scholar
Ronch, A.D., Badcock, K.J., Ghoreyshi, M. and Cummings, R.M. Modeling of unsteady aerodynamic loads, AIAA Paper 2011-6524, August 2011. doi: 10.2514/6.2011-6524 CrossRefGoogle Scholar
Tobak, M. and Schiff, L.B. On the formulation of the aerodynamic characteristics in aircraft dynamic, NASA TR R-456, Washington, DC, 1976.Google Scholar
Reisenthel, P.H. and Bettencourt, M.T. Data-based aerodynamic modeling using nonlinear indicial theory, AIAA Paper 99-0763, January 1999. doi: 10.2514/6.1999-763 CrossRefGoogle Scholar
Ghoryeshi, M., JirÑsek, A. and Cummings, R.M. Computational investigation into the use of response functions for aerodynamic loads modeling, AIAA J, 2012, 50, (6), pp 13141327. doi: 10.2514/1.J051428 CrossRefGoogle Scholar
Ghoreyshi, M. and Cummings, R.M. Unsteady aerodynamics modeling for aircraft maneuvers: a new approach using time-dependent surrogate modeling, J Aerosp Sci Technol 2014, 39, pp 222242. doi: 10.1016/j.ast.2014.09.009 CrossRefGoogle Scholar
Leishman, J.G. and Nguyen, K.Q. State space representation of unsteady airfoil behavior, AIAA J 1990, 28, (5), pp 836844. doi: 10.2514/3.25127 CrossRefGoogle Scholar
Goman, M.G. and Khrabrov, A.N. State-space representation of aerodynamic characteristics of an aircraft at high angles of attack, J Aircr 1994, 31, (5), pp 11091115. doi: 10.2514/3.46618 CrossRefGoogle Scholar
Fischenberg, D. Identification of an unsteady aerodynamic stall model from flight test data, AIAA Paper 1995-3438, 1995. doi: 10.2514/6.1995-3438 CrossRefGoogle Scholar
Fischenberg, D. and Jategaonkar, R.V. Identification of aircraft stall behavior from flight test data. RTO MP-11 Paper No. 17, 1999.Google Scholar
Maine, R.E. and Iliff, K.W. Application of parameter estimation to aircraft stability and control – the output-error approach. NASA RP 1168, January 1986.CrossRefGoogle Scholar
Morelli, E.A. and Klein, V. Application of system identification to aircraft at NASA Langley Research Center, J Aircraft, 2005, 42, (1), pp 1225. doi: 10.2514/1.3648 CrossRefGoogle Scholar
Jategaonkar, R.V. and Plaetschke, E. Identification of moderately nonlinear flight mechanics systems with additive process and measurement noise, J Guidance Cont Dyn, 1990, 13, (2), pp 277285. doi: 10.2514/3.20547 CrossRefGoogle Scholar
Kamali, C., Pashilkar, A.A. and Raol, J.R. Evaluation of recursive least squares algorithm for parameter estimation in aircraft real time applications, J Aerospace Science and Technology 2011, 15, (3), pp 165174. doi: 10.1016/j.ast.2010.12.007 CrossRefGoogle Scholar
Chowdhary, G. and Jategaonkar, R.V. Aerodynamic parameter estimation from flight data applying extended and unscented Kalman filter, J Aerospace Science and Technology 2010, 14, (2), pp 106117. doi: 10.1016/j.ast.2009.10.003 CrossRefGoogle Scholar
Seo, G., Kim, Y. and Saderla, S. Kalman-filter based online system identification of fixed-wing aircraft in upset condition, J Aerosp Sci Technol 2019, 89, pp 307317. doi: 10.1016/j.ast.2019.04.012 CrossRefGoogle Scholar
Ignatyev, D., Khrabrov, A. and Alexander, N. Neural network modeling of unsteady aerodynamic characteristics at high angles of attack, J Aerosp Sci Technol 2015, 41, pp 106115. doi: 10.1016/j.ast.2014.12.017 CrossRefGoogle Scholar
Lyu, Y., Zhang, W., Shi, J., Qu, X. and Cao, Y. Unsteady aerodynamic modeling of biaxial coupled oscillation based on improved ELM, J Aerosp Sci Technol 2017, 60, pp 5867. doi: 10.1016/j.ast.2016.10.029 CrossRefGoogle Scholar
Wang, Q., Qian, W. and He, K., Unsteady aerodynamic modelling at high angles of attack using support vector machines, Chin J Aeronaut, 2015, 28, (3), pp 659668. doi: 10.1016/j.cja.2015.03.010 CrossRefGoogle Scholar
Kumar, A. and Ghosh, A.K., Decision tree and random forest based novel unsteady aerodynamics modeling using flight data, J Aircr 2019, 56, (1), pp 403409. doi: 10.2514/1.C035034 CrossRefGoogle Scholar
Linse, D.J. and Stengel, R. Identification of aerodynamic coefficients using computational neural networks, J Guidance Cont Dyn 1993, 16, (6), pp 10181025. doi: 10.2514/3.21122 CrossRefGoogle Scholar
Raol, J.R. and Jategaonkar, R.V. Aircraft parameter estimation using recurrent neural networks – a critical appraisal, AIAA Paper 95-3504, 1995. doi: 10.2514/6.1995-3504 CrossRefGoogle Scholar
Raisinghani, S.C., Ghosh, A.K. and Kalra, P.K. Two new techniques for aircraft parameter estimation using neural networks, Aeronautical J, 1998, 102, (1011), pp 2530. doi: 10.1017/S0001924000065702 Google Scholar
Singh, S. and Ghosh, A.K. Estimation of lateral-directional parameters using neural network based modified delta method. Aeronautical J, 2007, 111, (1124), pp 659667. doi: 10.1017/S0001924000004838 CrossRefGoogle Scholar
Sinha, M., Kuttieri, R.A., Ghosh, A.K. and Misra, A. High angle of attack parameter estimation of cascaded fins using neural network, J Aircraft, 2013, 50, (1), pp 272291. doi: 10.2514/1.C031912 CrossRefGoogle Scholar
Peyada, N.K. and Ghosh, A.K. Aircraft parameter estimation using new filtering technique based on neural network and gauss-newton method, Aeronautical J, 2009, 113, (1,142), pp. 243252. doi: 10.1017/S0001924000002918 CrossRefGoogle Scholar
Kumar, R. and Ghosh, A.K. Nonlinear longitudinal aerodynamic modeling using neural gauss-newton method, J Aircr, 2011, 48, (5), pp. 18091812. doi: 10.2514/1.C031253 CrossRefGoogle Scholar
Kumar, R., Ghosh, A.K. and Misra, A. Parameter estimation from flight data of hansa-3 aircraft using quasi-steady stall modeling, J Aerosp Eng, 2013, 26, (3), pp. 544554. doi: 10.1061/(ASCE)AS.1943-5525.0000155 CrossRefGoogle Scholar
Saderla, S., Dhayalan, R. and Ghosh, A.K., Parameter estimation from near stall flight data using conventional and neural based methods, Defence Sci J, 2017, 67, (1), pp 311. doi: 10.14429/dsj.67.9995 CrossRefGoogle Scholar
Roy, A.G. and Peyada, N.K., Aircraft parameter estimation using hybrid neuro fuzzy and artificial bee colony optimization (HNFABC) algorithm, J Aerosp Sci Technol, 2017, 71, pp. 772782. doi: 10.1016/j.ast.2017.10.030 Google Scholar
Huang, G.B., Zhu, Q.Y. and Siew, C.K. Extreme learning machine: A new learning scheme of feed forward neural networks, IEEE International Joint Conference on Neural Networks, 2004, Budapest, Hungary. doi: 10.1109/IJCNN.2004.1380068 CrossRefGoogle Scholar
Huang, G.B., Zhu, Q.Y. and Siew, C.K. Extreme learning machine: Theory and applications. Neurocomputing 2006, 70, (1–3), pp 489501. doi: 10.1016/j.neucom.2005.12.126 CrossRefGoogle Scholar
Huang, G.B., Zhou, H., Ding, X. and Zhang, R. Extreme learning machine for regression and multiclass classification, IEEE Trans Syst Man Cybern, 2012, 42, (2), pp 513529. doi: 10.1109/TSMCB.2011.2168604 CrossRefGoogle ScholarPubMed
Bartlett, P.L., The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network, IEEE Trans Inform Theory, 1998, 44, (2), pp. 525536. doi: 10.1109/18.661502 CrossRefGoogle Scholar
Sola, J. and Sevilla, J., Importance of data normalization for the application of neural networks to complex industrial problems, IEEE Trans Nuclear Sci, 1997, 44, (3), pp. 14641468. doi: 10.1109/23.589532 CrossRefGoogle Scholar
Sahin, M. Comparison of modelling ANN and ELM to estimate solar radiation over Turkey using NOAA satellite data, International JRemote Sensing, 2013, 34, (21), pp 75087533. doi: 10.1080/01431161.2013.822597 CrossRefGoogle Scholar
Malathi, V., Marimuthu, N., Baskar, S. and Ramar, K. Application of extreme learning machine for series compensated transmission line protection, Eng Appl Artif Intell, 2011, 24, (5), pp. 880887. doi: 10.1016/j.engappai.2011.03.003.CrossRefGoogle Scholar
Verma, H.O. and Peyada, N.K., Parameter estimation of stable and unstable aircraft using extreme learning machine, AIAA 2018-0526, 2018. doi: 10.2514/6.2018-0526 CrossRefGoogle Scholar
Verma, H.O. and Peyada, N.K., Parameter estimation of aircraft using extreme learning machine and Gauss-Newton algorithm, Aeronautical J, 2020, 124, (1272), pp 271295. doi: 10.1017/aer.2019.123 CrossRefGoogle Scholar
Morelli, E.A., Practical aspects of the equation error method for aircraft parameter estimation, AIAA Atmospheric Flight Mechanics Conference, Keystone, Colorado, USA., 2006. doi: 10.2514/6.2006-6144 CrossRefGoogle Scholar