Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-22T10:21:52.187Z Has data issue: false hasContentIssue false

Embedded magnetorquer for the more demanding multi-cube small satellites

Published online by Cambridge University Press:  17 March 2022

A. Ali*
Affiliation:
School of Information Science and Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
W. Chao
Affiliation:
School of Information Science and Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
S.A. Khan
Affiliation:
College of Electrical Engineering, Zhejiang University, Hangzhou, 310027, China
J. Tong
Affiliation:
School of Information Science and Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
L.M. Reyneri
Affiliation:
Department of Electronics and Telecommunications, Politecnico di Torino, Torino, Italy
*
*Corresponding author. Email: [email protected]

Abstract

The recent development in the miniaturisation of small satellites and their subsystems has opened a new window of research for the universities around the globe. The low-cost, lightweight, small and flexible satellites have resulted in a broad range of multi-cube format small satellites, constructed from one-to-many adjoined cubes, having total mass between 1 and 10kg. The most challenging design part of the small satellites is to implant a large number of subsystems in a limited space. In order to resolve this issue, the designers are trying to shrink down the subsystem’s dimensions further. In this paper, a magnetorquer coil is designed and analysed for a 4U (4 units cube; 33 × 33 × 16.5)cm3 and 8U (8 units cube; 33 × 33 × 33)cm3 multi-cube small satellites, respectively. The coil is embedded in the six internal layers of an eight-layers printed circuit board (PCB). The designed magnetorquer system is fully reconfigurable and multiple coils configurations can be achieved by attaching them in series, parallel and hybrid arrangements. Due to embedded nature, the heat generated by the coil may damage the components mounted on the PCB outer surfaces. Therefore, thermal analysis is performed to ensure that the coil generated heat will not cross the PCB components temperature safety limits. All the possible combinations of the coils are analysed for current drawn, power consumption, heat dissipation, magnetic moment generation and resultant torque. A desired torque can be attained by using a particular coil configuration at the cost of specific amount of consumed power and PCB surface thermals.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of Royal Aeronautical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmed Khan, S., Ali, A., Shiyou, Y. and Tong, J. Reconfigurable asymmetric embedded magnetorquers for attitude control of nanosatellites, IEEE J Miniaturization Air Sp Syst, 2021, 2, (4), pp 236243. doi: 10.1109/JMASS.2021.3094232.CrossRefGoogle Scholar
Ahmed Khan, S., Ali, A., Shiyou, Y., Tong, J. and Guerrero, J.M. Optimized design of embedded air coil for small satellites with various dimensions, J Aerosp Inf Syst, 2021, 18, (5). doi: 10.2514/1.i010882.Google Scholar
Golkar, A. and Salado, A. Definition of new space—Expert survey results and key technology trends, IEEE J Miniaturization Air Sp Syst, 2020, 2, (1), pp 29. doi: 10.1109/jmass.2020.3045851.CrossRefGoogle Scholar
O’Halloran, M., Hall, J.G. and Rapanotti, L. Safety engineering with COTS components, Reliab Eng Syst Saf, 2017, 160, pp 5466. doi: https://doi.org/10.1016/j.ress.2016.11.016.CrossRefGoogle Scholar
Dahbi, S. et al., Power budget analysis for a LEO polar orbiting nano-satellite, 2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP), 2017, pp 1–6. doi: 10.1109/ATSIP.2017.8075580.CrossRefGoogle Scholar
Moscholios, I.D., Vassilakis, V.G., Sagias, N.C. and Logothetis, M.D. On channel sharing policies in LEO mobile satellite systems, IEEE Trans Aerosp Electron Syst, 2018, 54, (4), pp 16281640. doi: 10.1109/TAES.2018.2798318.CrossRefGoogle Scholar
Ali, A., Khan, S.A., Dildar, M.A., Ali, H. and Ullah, N. Design & thermal modeling of solar panel module with embedded reconfigurable Air-Coil for micro-satellites, PLoS One, 2018. doi: 10.1371/journal.pone.0199145.CrossRefGoogle ScholarPubMed
SelvaGolkar, A.D., Korobova, O., i Cruz, I.L., Collopy, P. and de Weck, O.L. Distributed earth satellite systems: What is needed to move forward?, J Aerosp Inf Syst, Aug. 2017, 14, (8), pp 412438. doi: 10.2514/1.I010497.Google Scholar
Spangelo, S. and Cutler, J. Analytical modeling framework and applications for space communication networks, J Aerosp Inf Syst, Oct. 2013, 10, (10), pp 452466. doi: 10.2514/1.I010086.Google Scholar
Kennedy, A.K. and Cahoy, K.L. Performance analysis of algorithms for coordination of earth observation by CubeSat constellations, J Aerosp Inf Syst, Oct. 2016, 14, (8), pp 451471. doi: 10.2514/1.I010426.Google Scholar
Ousaloo, H.S. Magnetic attitude control of dynamically unbalanced spinning spacecraft during orbit raising, J Aerosp Eng, 2014, 27, (2). doi: 10.1061/(ASCE)AS.1943-5525.0000252.CrossRefGoogle Scholar
Zhu, M., Chen, X. and Li, Z. Attitude and momentum management of inertial oriented spacecraft, J Aerosp Eng, 2015, 28, (5). doi: 10.1061/(ASCE)AS.1943-5525.0000471.CrossRefGoogle Scholar
Giulietti, F., Quarta, A.A. and Tortora, P. Optimal control laws for momentum-wheel desaturation using magnetorquers, J Guid Control Dyn, 2006, 29, (6). doi: 10.2514/1.23396.CrossRefGoogle Scholar
Lovera, M. and Astolfi, A. Global magnetic attitude control of spacecraft in the presence of gravity gradient, IEEE Trans Aerosp Electron Syst, 2006, 42, (3), pp 796805. doi: 10.1109/TAES.2006.248214.CrossRefGoogle Scholar
Sun, L., Wang, Z., Zhao, G. and Huang, H. Magnetic attitude tracking control of gravity gradient microsatellite in orbital transfer, Aeronaut J, 2019, 123, (1269), pp 18811894. doi: 10.1017/aer.2019.112.CrossRefGoogle Scholar
Zhou, K., Huang, H., Wang, X. and Sun, L. Magnetic attitude control for Earth-pointing satellites in the presence of gravity gradient, Aerosp Sci Technol, 2017, 60, pp 115123. doi: 10.1016/j.ast.2016.11.003.CrossRefGoogle Scholar
Ovchinnikov, M.Y. and Penkov, V.I. Passive magnetic attitude control system for the munin nanosatellite, Cosm Res, 2002, 40, (2), pp 142156. doi: 10.1023/A:1015197303662.CrossRefGoogle Scholar
Ovchinnikov, M.Y., Shargorodskiy, V.D., Pen’kov, V.I., Mirer, S.A., Guerman, A.D. and Nemuchinskiy, R.B. Nanosatellite REFLECTOR: Choice of parameters of the attitude control system, Cosm Res, 2007, 45, (1), pp 6077. doi: 10.1134/S0010952507010078.CrossRefGoogle Scholar
Santoni, F. and Zelli, M. Passive magnetic attitude stabilization of the UNISAT-4 microsatellite, Acta Astronaut, 2009, 65, (5–6), pp 792803. doi: 10.1016/j.actaastro.2009.03.012.CrossRefGoogle Scholar
Kumar, K.D., Tahk, M.J. and Bang, H.C. Satellite attitude stabilization using solar radiation pressure and magnetotorquer, Control Eng Pract, 2009, 17, (2), pp 267279. doi: 10.1016/j.conengprac.2008.07.006.Google Scholar
Ali, A., Tong, J., Ali, H., Mughal, M.R. and Reyneri, L.M. A detailed thermal and effective induced residual spin rate analysis for LEO small satellites, IEEE Access, 2020, 8, pp 146196146207. doi: 10.1109/ACCESS.2020.3014643.CrossRefGoogle Scholar
Ali, A., Ullah, K., Rehman, H.U., Bari, I. and Reyneri, L.M. Thermal characterisation analysis and modelling techniques for CubeSat-sized spacecrafts, Aeronaut J, 2017, 121, pp 18581878. doi: 10.1017/aer.2017.108.CrossRefGoogle Scholar
Ali, A., Mughal, M.R., Ali, H. and Reyneri, L. Innovative power management, attitude determination and control tile for CubeSat standard NanoSatellites, Acta Astronaut, 2014, 96, (1), pp 116127. doi: 10.1016/j.actaastro.2013.11.013.Google Scholar
Ali, A., Mughal, M.R., Ali, H., Reyneri, L.M. and Aman, M.N. Design, implementation, and thermal modeling of embedded reconfigurable magnetorquer system for nanosatellites, IEEE Trans Aerosp Electron Syst, 2015, 51, (4), pp 26692679. doi: 10.1109/TAES.2015.130621.CrossRefGoogle Scholar
SPENVIS, Space Enivornment Information System, 2020. https://www.spenvis.oma.be/ (accessed Apr. 03, 2020).Google Scholar
Slavinskis, A. et al. High spin rate magnetic controller for nanosatellites, Acta Astronaut, 2014, 95, pp 218226. doi: 10.1016/j.actaastro.2013.11.014.CrossRefGoogle Scholar
Ehrpais, H., Kütt, J., Sünter, I., Kulu, E., Slavinskis, A. and Noorma, M. Nanosatellite spin-up using magnetic actuators: ESTCube-1 flight results, Acta Astronaut, 2016, 128, pp 210216. doi: 10.1016/j.actaastro.2016.07.032.CrossRefGoogle Scholar
Lyubimov, V.V. and Podkletnova, S.V. Damping of microsatellite angular velocity by means of magnetic moments of foucault currents, 2019 Dynamics of Systems, Mechanisms and Machines (Dynamics), 2019, pp 16. doi: 10.1109/Dynamics47113.2019.8944456.Google Scholar
Mughal, M.R., Ali, H., Ali, A., Praks, J. and Reyneri, L.M. Optimized design and thermal analysis of printed magnetorquer for attitude control of reconfigurable nanosatellites, IEEE Trans Aerosp Electron Syst, 2020, 56, (1), pp 736747. doi: 10.1109/TAES.2019.2933959.CrossRefGoogle Scholar
Supplementary material: PDF

Ali et al. supplementary material

Ali et al. supplementary material

Download Ali et al. supplementary material(PDF)
PDF 3.9 MB