Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-03T10:38:26.423Z Has data issue: false hasContentIssue false

Effective aero-optical suppression by steady wall blowing and wall suction schemes for supersonic turbulent boundary layer

Published online by Cambridge University Press:  21 November 2022

H. Zou
Affiliation:
National University of Defense Technology, College of Aerospace Science and Engineering, Changsha, Hunan, Peoples Republic of China
X.-L. Yang*
Affiliation:
National University of Defense Technology, College of Aerospace Science and Engineering, Changsha, Hunan, Peoples Republic of China
X.-W. Sun
Affiliation:
National University of Defense Technology, College of Aerospace Science and Engineering, Changsha, Hunan, Peoples Republic of China
W. Liu
Affiliation:
National University of Defense Technology, College of Aerospace Science and Engineering, Changsha, Hunan, Peoples Republic of China
Q. Yang
Affiliation:
National University of Defense Technology, College of Aerospace Science and Engineering, Changsha, Hunan, Peoples Republic of China
*
*Corresponding author: Email: [email protected]

Abstract

As a basic flow model for engineering applications, wall-bounded turbulent flow has been widely studied in the field of aero-optics, but the flow control methods that could effectively suppress aero-optical effects are relatively rare. As an urgent requirement in engineering application, the concept of the steady wall blowing and suction is proposed by the author. Firstly, the author briefly described the flow model and physical method. Secondly, the choice of disturbance type is given. Then, the results of wall blowing-suction, suction and blowing ways based on steady and unsteady disturbance are compared. Finally, it is concluded that employing the high steady wall blowing disturbance (A = 0.2) could realise aero-optical suppression by around 20%. Besides, the steady wall suction scheme contributes to about 70%–80% reduction effect within a wide amplitude range (A = 0.2–1.0), which suppresses this effect by maintaining laminar state downstream contrasted by the baseline case.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of Royal Aeronautical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Jumper, E.J. and Gordeyev, S. Physics and measurement of aero-optical effects: Past and present, Ann Rev Fluid Mech, 2017, 49, (1), pp 419441.CrossRefGoogle Scholar
Sun, X.W., Liu, W. and Chai, Z.X. Method of investigation for numerical simulation on aero-optical effect based on WCNS-E-5, AIAA J, 2019, 57, (5) pp 20172029.CrossRefGoogle Scholar
Sun, X.W. and Liu, W. Research progress of aero-optical effect (in Chinese), Adv Mech, 2020, 50, p 202008.Google Scholar
Sun, X.W., Yang, X.L. and Liu, W. Numerical investigation on aero-optical reduction for supersonic turbulent mixing layer, Int J Aeronaut Space Sci, 2020, 22, pp 239254.CrossRefGoogle Scholar
Sun, X.W., Yang, X.L. and Liu, W. Aero-optical and aero-heating effects of supersonic turbulent boundary layer with a tangential wall-injection film, Phys Fluids, 2021, 33, p 035118.CrossRefGoogle Scholar
Wyckham, C.M. and Smits, A.J. Aero-optic distortion in transonic and hypersonic turbulent boundary layers, AIAA J, 2009, 47, (9), pp 21592168.CrossRefGoogle Scholar
Sun, X.W. and Liu, W. Validation case for supersonic boundary layer and turbulent aero-optical investigation in high-Reynolds-number freestream by WCNS-E-5, Proc Inst Mech Eng G J Aerosp Eng, 2020, 234, (15), pp 21532166.CrossRefGoogle Scholar
Ding, H.L., Yi, S.H., Zhao, X.H. and Ou Yang, T.C. Experimental investigation on aero-optical mitigation of hypersonic optical dome using microvortex generators, AIAA J., 2019, 57, (6), pp 26532658.CrossRefGoogle Scholar
Sun, X.W., Yang, X.L. and Liu, W. Validation method of aero-optical effect simulation for supersonic turbulent boundary layer, AIAA J, 2021, 22, (1), pp 410416.CrossRefGoogle Scholar
Sun, X.W., Yang, X.L. and Liu, W. Aero-optical suppression for supersonic turbulent boundary layer, J Turbul, 2021, 22, (1), pp 125.CrossRefGoogle Scholar
Radespiel, R., Burnazzi, M., Casper, M. and Scholz, P. Active flow control for high lift with steady blowing, Aeronaut J, January 2016, 120, (1223), pp 171200.CrossRefGoogle Scholar
He, Y. and Morgan, R.G. Transition of compressible high enthalpy boundary layer flow over a flat plate, Aeronaut J, February 1994, 98, (972), pp 2534.CrossRefGoogle Scholar
Sinha, N., Arunajatesan, S. and Ukeiley, L.S. Large Eddy simulation of aero-optic flowfields and flow control application, 35th AIAA Plasmadynamics and Lasers Conference, July 2014.Google Scholar
Smith, A.E. and Gordeyev, S. Evaluation of passive boundary layer flow control methods for aero-optic mitigation, 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2013.CrossRefGoogle Scholar
Gordeyev, S. and Juliano, J.T. Optical characterization of nozzle-wall Mach-6 boundary layers, 54th AIAA Aerospace Sciences Meeting, 2016.CrossRefGoogle Scholar
Mosca, V., Karpuk, S., Sudhi, A., Badrya, C. and Elham, A. Multidisciplinary design optimisation of a fully electric regional aircraft wing with active flow control technology, Aeronaut J, 2022, 126, (1298), pp 10721089.CrossRefGoogle Scholar
Da Ronch, A., Panzeri, M., Drofelnik, J. and dIppolito, R. Sensitivity and calibration of turbulence model in the presence of epistemic uncertainties, CEAS Aeronaut J, March 2019.CrossRefGoogle Scholar
Sharma, S., Shadloo, M.S., Hadjadj, A. and Kloker, M.J. Control of oblique-type breakdown in a supersonic boundary layer employing streaks, J Fluid Mech, 2019, 873, pp 10721089.CrossRefGoogle Scholar
Pirozzoli, S., Grasso, F. and Gatski, T.B. Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at M=2.25, Phys Fluids, 2004, 16, (3), pp 530545.CrossRefGoogle Scholar
Muppidi, S. and Mahesh, K. Direct numerical simulations of roughness-induced transition in supersonic boundary layers, J Fluid Mech, 2012, 693, (2), pp 2856.CrossRefGoogle Scholar
Zhao, Y., Liu, W., Xu, D., Yi, S. and Elham, A. A combined experimental and numerical investigation of roughness induced supersonic boundary layer transition, Acta Astronaut, 2016, 118, pp 199209.CrossRefGoogle Scholar
Liepmann, H.W. The rise and fall of ideas in turbulence, Amer Sci, 1979, 67, (2), pp 221228.Google Scholar
Tardu, S.F., and Doche, O. Active control of the turbulent drag by a localized periodical blowing dissymmetric in time, Exp Fluids, 2009, 47, (1) pp 1926.CrossRefGoogle Scholar