Published online by Cambridge University Press: 03 February 2016
The dynamic inflow model is a powerful tool for predicting the induced velocity distribution over a rotor disc. On account of its closed form and simplicity, the model is especially practical for studying flight mechanics or for designing control systems for helicopters. Scant attention has, however, been paid so far in utilising the dynamic inflow model to analyse an autorotating rotor, which is different from a powered rotor in the geometric relation between the direction of the inflow and the rotor disc. Autorotation is an abnormal condition for helicopters, but for gyroplanes it is the normal mode of operation. Therefore the theoretical discussion on an autorotating rotor is of importance not only to improve the understanding of present gyroplanes, but also in the development of new gyroplanes and to analyse the windmill-brake state of helicopters. Dynamic inflow modelling is reviewed from first principles, and this identifies a modification to the mass flow parameter. A qualitative assessment of this change indicates that it is likely to have a negligible impact on the trim state of rotorcraft in autorotation, but a significant effect on the dynamic inflow modes in certain flight conditions. This is confirmed by numerical simulation, although considerable differences only become apparent for steep descents with low forward speed. It is concluded that while modification of the mass flow parameter is perhaps mathematically accurate, for practical purposes it is required only in a limited area of the flight envelope of autorotating rotorcraft.