Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-22T16:29:23.728Z Has data issue: false hasContentIssue false

Development of an airship for tropical rain forest canopy exploration

Published online by Cambridge University Press:  03 February 2016

G. E. Dorrington*
Affiliation:
Department of Engineering, Queen Mary, University of London, UK

Abstract

The design, manufacture and testing of a 480 cubic metre helium-filled airship, or dirigible balloon, intended for flight above tropical rain forest canopy is outlined. The requirements for the airship and the preliminary sizing method are set-out. Details of the final design and flight test results are included, as well as suggestions concerning future work. Particular attention is paid to the issue of accurate station-keeping and operation close to the canopy with winds present. It is concluded that the development of a truly useful aerial platform for canopy biological studies requires further research in aerodynamics, dynamic simulation and ultra-quiet propulsion systems.

Type
Research Article
Copyright
Copyright © Royal Aeronautical Society 2005 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Beebe, W., Half Mile Down, 1935, The Bodley Head, London.Google Scholar
2. Beebe, W., Hartley, G.I. and Howes, P.G., Tropical Wild Life in British Guiana, 1917, p 85, New York Zoological Society, New York.Google Scholar
3. Wilson, E.O.. Rain forest canopy, the high frontier, National Geographic, December 1991, 180, (6), pp 78107.Google Scholar
4. Moffett, M.W., The High Frontier, Exploring the Tropical Rainforest Canopy, 1993, Harvard Univ Press, Cambridge, Massachussetts.Google Scholar
5. Moffett, A.W., Secoy, K. and Jackson, T. (Eds). The Global Canopy Handbook, 2002, Global Canopy Programme, Oxford.Google Scholar
6. Sutton, S.. Alice grows up: canopy science in transition from wonderland to reality, Plant Ecology, April 2002, 153, pp 1321.Google Scholar
7. Harrison, T.. Birds Above Borneo Jungle Canopy, 1963, Ibis, 105, pp 403406.Google Scholar
8. Payne, J. and Gasis, J.. Surveying orang-utan populations by counting nests from a helicopter: a pilot survey in Sabah, Primate Conservation, Journal of the IUCN/SSC Primate Specialist Group, September 1987, 8, pp 92103, World Wildlife Fund and Dept of Anat Sciences, State Univ, New York.Google Scholar
9. Hallé, F.A.. Raft atop the rain forest, National Geographic, October 1990, 178, (4), pp 129138.Google Scholar
10. Dorrington, G.E.. Use of small lighter-than-air vehicles for mobile access to the upper canopy, Selbyana, 1995, 16, (2), pp 141143.Google Scholar
11. Dorrington, G.E.. Project Hornbill, use of a small electric powered helium airship for scientific studies of tropical rain forest canopy, 1996, Proceedings of the Second International Airship Conference, Stuttgart/Friedrichshafen, 3-4 July 1996, Institut für Statik und Dynamik der Luft-und Raumfahrtkonstruktionen, Universität Stuttgart.Google Scholar
12. Faure, E.. L’aérostation Scientifique: historique et perspectives, 2004, L’Aérostation Scientifique, Des Dirigeables au Service de la Science, Faure, E. (Ed), Publications de L’Université de Provence, Marseille,.Google Scholar
13. Charles-Dominique, P., Gottsberger, G., Freiberg, M. and Stevens, A.D.. ‘COPAS’: a new permanent system to reach the forest canopy, The Global Canopy Handbook, 2002, Mitchell, A.W., Secoy, K. and Jackson, T. (Eds), Global Canopy Programme, Oxford.Google Scholar
14. Garstang, M. et al. The Amazon boundary-layer experiment (ABLE 2B): a meteorological perspective, Bulletin Am Meteorological Soc, 1990, 71, pp 1931.Google Scholar
15. Gash, J.H.C. and Nobre, C.A., Amazonia Forest, Pasture and Climate 1994, Institute of Hydrology, Wallingford,.Google Scholar
16. Thomson, O.E. and Pinker, R.E.. Wind and temperature profile characteristics in a tropical evergreen forest in Thailand, Tellus, 1975, 27, (6), pp 562573.Google Scholar
17. Aoki, M., Yabuki, K. and Koyami, H.. Micrometeorology of Pasoh forest, Malay National J, 30, (2), pp 149159.Google Scholar
18. Molion, L.C.B.. Micrometeorology of an Amazonian rain forest, 1987, The Geophysiology of Amazonia, Dickinson, R.E. (Ed), pp 255269, Wiley, New York.Google Scholar
19. Shuttleworth, W.J.. Micrometeorology of Temperate and Tropical Forest, Phil Trans R Soc Lond B, 1989, 324, pp 299334.Google Scholar
20. Burgess, C.P., Airship Design, 1927, Ronald, New York.Google Scholar
21. Achenbach, E.. The effects of surface roughness and tunnel blockage on the flow past spheres, J Fluid Mech, 1974, 65, (1), pp 113125.Google Scholar
22. Taneda, S.. Visual observations of the flow past a sphere at Reynolds numbers between 104 and 106, J Fluid Mech, 1978, 85, (1), pp 187192.Google Scholar
23. Dorrington, G.E.. Drag of spheroid-cone shaped airship, J Aircr, in press.Google Scholar
24. Suryanaraynana, G.K., Pauer, H. and Meier, G.E.A., Passive Control of the Wake of a Sphere by Ventilation, Bluff Body Wake Dynamics and Instabilities, Eckelmann, H., Graham, J.M.R., Huerre, P. and Mankewitz, P.A., (Eds), 1993, pp 9396, Springer-Verlag, London.Google Scholar
25. Suryanaraynana, G.K., Pauer, H. and Meier, G.E.A.. Bluff-body drag reduction by passive ventilation, Exp in Fluids, 1993, 16, pp 7381.Google Scholar
26. Suryanaraynana, G.K. and Meier, G.E.A.. Effect of ventilation on the flowfield around a sphere, Exp in Fluids, 1995, 19, pp 7888.Google Scholar
27. Jeon, S., Choi, J., Jeon, W.P., Choi, H. and Park, J.. Active control of flow over a sphere for a drag reduction at a subcritical Reynolds number, J Fluid Mech, 2004, 517, pp 113129.Google Scholar
28. Roshko, A.. On the drag and shedding frequency of two dimensional bluff bodies, NACA TN 3169, July 1954.Google Scholar
29. Glauert, H., The Elements of Aerofoil and Airscrew Theory, 1947, pp 203206, Second Edition, Cambridge University Press, Cambridge.Google Scholar
30. Dorrington, G.E.. Exploitation d’un dirigeable ultra-léger sur une forêt tropicale, 2004, L’Aérostation Scientifique, Des Dirigeables au Service de la Science, Faure, E. (Ed), Publications de L’Université de Provence, Marseille.Google Scholar
31. Dorrington, G.E. and Kröplin, B.. Buoyancy Variations of a Small Airship, 1996, Proceedings of the Second International Airship Conference, Stuttgart/Friedrichshafen, 3-4 July 1996, Institut für Statik und Dynamik der Luft-und Raumfahrtkonstruktionen, Universität Stuttgart.Google Scholar
32. Odar, F. and Hamilton, W.S.. Forces on a sphere accelerating in a viscous fluid, J Fluid Mech, 1964, 18, pp 302314.Google Scholar
33. Roos, F.W. and Willmarth, W.W.. Some experimental results on sphere and disk drag, AIAA J, 1971, 9, (2), pp 285291.Google Scholar
34. Frazer, R.A. and Simmons, L.F.G.. The dependence of the resistance of bodies upon acceleration as determined by chronograph analysis, ARC R & M, June 1919, 590.Google Scholar
35. Lamb, H.. The inertia coefficients of an ellipsoid moving in a fluid, ARC R&M, October 1918, 623.Google Scholar
36. Arnstein, K. and Klemperer, W.. Performance of Airships, Aerodynamic Theory, Durrand, W.F. (Ed), January 1943, pp 49133, 6 (Div, R), California Institute of Technology.Google Scholar
37. Jones, S.P. and Delaurier, J.D.. Aerodynamic estimation techniques for aerostats and airships, J Aircr, 1983, 20, (2), pp 120126.Google Scholar
38. Etkin, B. and D’Eleuterio, G.. Comment on ‘Aerodynamic estimation techniques for aerostats and airships’, J Aircr, 1983, 22, (11), pp 1023.Google Scholar
39. Prandtl, L. and Tietjens, O.G., Fundamentals of Hydro- and Aeromechanics, 1934, pp 4759, McGraw Hill, London.Google Scholar
40. Etkin, B.. Comment on ‘Effects of atmospheric turbulence on quadrotor heavy-lift airship’, J Aircr, 1985, 22, (1) pp 9395.Google Scholar
41. Tischler, M.B. and Jex, H.R. Reply by authors to Etkin, B., J Aircraft, 1985, 22, (1), pp 9596.Google Scholar