Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-22T04:01:26.916Z Has data issue: false hasContentIssue false

Development of an actuated corrugated laminate for morphing structures

Published online by Cambridge University Press:  17 August 2020

A. Airoldi*
Affiliation:
Department of Aerospace Science and Technology, Politecnico di Milano, Milan, Italy
D. Rigamonti
Affiliation:
Department of Aerospace Science and Technology, Politecnico di Milano, Milan, Italy
G. Sala
Affiliation:
Department of Aerospace Science and Technology, Politecnico di Milano, Milan, Italy
P. Bettini
Affiliation:
Department of Aerospace Science and Technology, Politecnico di Milano, Milan, Italy
E. Villa
Affiliation:
Istituto di Chimica della Materia Condensata e di Tecnologie per l’Energia, CNR, Lecco, Italy
A. Nespoli
Affiliation:
Istituto di Chimica della Materia Condensata e di Tecnologie per l’Energia, CNR, Lecco, Italy

Abstract

This paper presents the design, manufacturing and experimental assessment of a morphing element consisting of a composite corrugated panel that hosts a diffused actuation system based on Shape Memory Alloy (SMA) actuators. The characterisation of the SMA actuators is reported and the system performance is predicted through an analytical model and finite element analyses. Two versions of the actuated system are proposed, with different methods for the physical integration of the SMA wires into the composite part. Manufacturing and testing of specimens with different wire densities are reported. Correlation with experiments validates the analytical and numerical approaches adopted for the design and analyses. The results confirm the potential of the concept proposed for developing corrugated panels that can be contracted in a predefined direction by a load-bearing actuation system, but still retain high stiffness and strength properties in other directions.

Type
Research Article
Copyright
© The Author(s), 2020. Published by Cambridge University Press on behalf of Royal Aeronautical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barbarino, S., Bilgen, O., Ajaj, R.M., Friswell, M.I and Inman, D.J. A review of morphing aircraft, J Intell Mater Syst Struct, 2011, 22, pp 823877. doi: 10.1177/1045389X11414084.CrossRefGoogle Scholar
Yokozeki, T., Takeda, S., Ogasawara, T. and Ishikawa, T. Mechanical properties of corrugated composites for candidate materials of flexible wing structures, Compos Part A Appl Sci Manuf, 2006, 37, pp 15781586. doi: 10.1016/j.compositesa.2005.10.015.CrossRefGoogle Scholar
Thill, C, Etches, J.A., Bond, I.P., Potter, K.D. and Weaver, P.M. Composite corrugated structures for morphing wing skin applications, Smart Mater Struct, 2010, 19, doi: 10.1088/0964-1726/19/12/124009.CrossRefGoogle Scholar
Airoldi, A., Sala, G., Di Landro, L., Bettini, P. and Gilardelli, A. Composite corrugated laminates for morphing applications, In: A. Concilio et al. (Eds.), Morphing Wing Technologies - Large Commercial Aircraft and Civil Helicopters, Butterworth-Heinemann, 2018, Cambridge, MA, pp 247276, doi: 10.1016/B978-0-08-100964-2.00009-5CrossRefGoogle Scholar
Xia, Y., Bilgen, O. and Friswell, M.I. The effect of corrugated skins on aerodynamic performance, J Intell Mater Syst Struct, 2014, 25, pp 786794, doi: 10.1177/1045389X14521874.CrossRefGoogle Scholar
Airoldi, A., Fournier, S., Borlandelli, E., Bettini, P. and Sala, G. Design and manufacturing of skins based on composite corrugated laminates for morphing aerodynamic surfaces, Smart Mater Struct, 2017, 26. doi: 10.1088/1361-665X/aa6069.CrossRefGoogle Scholar
Melton, K.N., General applications of SMA’s and smart materials, In: K. Otsuka, C.M. Wayman (Eds.), Shape Memory Materials, Cambridge University Press, 1998, pp 220239.Google Scholar
Barbarino, S., Saavedra Flores, E.L., Ajaj, R.M., Dayyani, I. and Friswell, M.I. A review on shape memory alloys with applications to morphing aircraft, Smart Mater Struct, 2014, 23, doi: 10.1088/0964-1726/23/6/063001.CrossRefGoogle Scholar
Sofla, A.Y.N., Meguid, S.A., Tan, K.T. and Yeo, W.K. Shape morphing of aircraft wings: status and challenges, Mater Des, 2010. doi: 10.1016/j.matdes.2009.09.011.CrossRefGoogle Scholar
Kang, W., Kim, E., Jeong, M. and Lee, I. Morphing wing mechanism using an SMA wire actuator, Int J Aeronaut Sp Sci, 2012, 13, pp 5863. doi: 10.5139/IJASS.2012.13.1.58.CrossRefGoogle Scholar
Karagiannis, K., Stamatelos, D., Spathopoulos, T., Solomou, A., Machairas, T., Chrysohoidis, N., Saravanos, D. and Kappatos, V. Airfoil morphing based on SMA actuation technology, Aircr Eng Aerosp Technol, 2014, 86, pp 295306. doi: 10.1108/AEAT-10-2012-0194.CrossRefGoogle Scholar
Ko, S.-H., Bae, J.-S. and Rho, J.-H. Development of a morphing flap using shape memory alloy actuators: the aerodynamic characteristics of a morphing flap, Smart Mater Struct, 2014, 23, doi: 10.1088/0964-1726/23/7/074015.CrossRefGoogle Scholar
Ameduri, S., Brindisi, A., Tiseo, B., Concilio, A. and Pecora, R. Optimization and integration of shape memory alloy (SMA)-based elastic actuators within a morphing flap architecture, J Intell Mater Syst Struct, 2012, 23, pp. 381396. doi: 10.1177/1045389X11428672.CrossRefGoogle Scholar
Wang, Q., Xu, Z. and Zhu, Q. Structural design of morphing trailing edge actuated by SMA, Front. Mech Eng, 2013, 8, pp 268275. doi: 10.1007/s11465-013-0261-y.Google Scholar
Abdullah, E.J., Bil, C. and Watkins, S. Performance of Adaptive Airfoil Control System Using Shape Memory Alloy Actuators for UAV, in: AIAA Aviat. Technol. Integr. Oper. Conf., 2011, pp. 112. doi: 10.2514/6.2011-6849.CrossRefGoogle Scholar
Manzo, J., Garcia, E., Wickenheiser, A. and Horner, G.C. Design of a shape-memory alloy actuated macro-scale morphing aircraft mechanism, in: SPIE 5764, Smart Struct Mater, 2005, pp 232240. doi: 10.1117/12.601372.CrossRefGoogle Scholar
Coutu, D., Brailovski, V., Georges, T., Terriault, P. and Morellon, E. Design of shape memory alloy actuators for morphing laminar wing with flexible extrados, J Mech Des, 2009, 131, p 91006. doi: 10.1115/1.3160310.Google Scholar
Brailovski, V., Terriault, P., Georges, T. and Coutu, D. SMA actuators for morphing wings, Phys Procedia, 2010, pp 197203. doi: 10.1016/j.phpro.2010.11.098.CrossRefGoogle Scholar
Galantai, V.P., Sofla, A.Y.N., Meguid, S.A., Tan, K.T. and Yeo, W.K. Bio-inspired wing morphing for unmanned aerial vehicles using intelligent materials, Int J Mech Mater Des, 2012, 8, pp 7179. doi: 10.1007/s10999-011-9176-0.CrossRefGoogle Scholar
Icardi, U. and Ferrero, L. Preliminary study of an adaptive wing with shape memory alloy torsion actuators, Mater Des, 2009, 30, pp 42004210. doi: 10.1016/j.matdes.2009.04.045.CrossRefGoogle Scholar
Park, J.S., Kim, S.H., Jung, S.N. and Lee, M.K. Design and analysis of variable-twist tiltrotor blades using shape memory alloy hybrid composites, Smart Mater Struct, 2011, 20, doi: 10.1088/0964-1726/20/1/015001.CrossRefGoogle Scholar
Bushnell, G.S., Arbogast, D. and Ruggeri, R. Shape control of a morphing structure (rotor blade) using a shape memory alloy actuator system, Act Passiv Smart Struct Integr Syst, 2008, pp 69282A. doi: 10.1117/12.775927.Google Scholar
Testa, C., Leone, S., Ameduri, S. and Concilio, A. Feasibility study on rotorcraft blade morphing in hovering, Proc SPIE - Int Soc Opt Eng, 5764, 2005, pp 171182. doi: 10.1117/12.600975.Google Scholar
Prahlad, H. and Chopra, I. Design of a variable twist tiltrotor blade using shape memory alloy (SMA) actuators, Proc SPIE - Int Soc Opt Eng, 2001, 4327, pp 4659. doi: 10.1117/12.436559.Google Scholar
Strelec, J.K.J.J.K., Lagoudas, D.C.D., Khan, M.M.A. and Yen, J. Design and implementation of a shape memory alloy actuated reconfigurable airfoil, J Intell Mater Syst Struct, 2003, 14, pp 257273. doi: 10.1177/104538903034687.CrossRefGoogle Scholar
Fumagalli, L., Butera, F. and Coda, A. SmartFlex® NiTi wires for shape memory actuators, J Mater Eng Perform 2009, 18(5), pp 691695, doi: 10.1007/s11665-009-9407-9CrossRefGoogle Scholar
Bettini, P., Riva, M., Sala, G., Di Landro, L., Airoldi, A. and Cucco, J. Carbon fiber reinforced smart laminates with embedded sma actuators-part I: embedding techniques and interface analysis, J Mater Eng Perform, 2009, 18, pp 664671, doi: 10.1007/s11665-009-9384-zCrossRefGoogle Scholar
Grigorie, T.L., Botez, R.M., Popov, A.V., Mamou, M. and Mébarki, Y. A hybrid fuzzy logic proportional-integral-derivative and conventional on-off controller for morphing wing actuation using shape memory alloy. Part 1: Morphing system mechanisms and controller architecture design, Aeronaut J, 2012, 116, pp 433449. doi: 10.1017/S0001924000006977.CrossRefGoogle Scholar
Icardi, U. and Ferrero, L. SMA actuated mechanism for an adaptive wing, J Aerosp Eng, 2010, 24, pp. 140143. doi: 10.1061/(asce)as.1943-5525.0000061.CrossRefGoogle Scholar
Cisse, C., Zaki, W. and Ben Zineb, T. A review of modeling techniques for advanced effects in shape memory alloy behavior, Smart Mater Struct, 2016, 25, 103001. doi: 10.1088/0964-1726/25/10/103001.CrossRefGoogle Scholar
Khandelwal, A. and Buravalla, V. Models for shape memory alloy behavior: an overview of modeling approaches, Int J Struct Chang Solids, 2009, 1, pp 111148. https://journals.tdl.org/ijscs/index.php/ijscs/article/view/2318.Google Scholar
Turner, T.L. Thermomechanical response of shape memory alloy hybrid composites, Engineering, 2000, pp 1220. doi: 10.1177/1045389X9400500306.Google Scholar
Turner, T.L. A new thermoelastic model for analysis of shape memory alloy hybrid composites, J Intell Mater Syst Struct, 2000, 11, pp 382394. doi: 10.1106/DTFJ-UFL3-XV0U-WJNA.CrossRefGoogle Scholar
Turner, T.L., Buehrle, R.D., Cano, R.J. and Fleming, G.A. Modeling, fabrication, and testing of a SMA hybrid composite jet engine chevron concept, J Intell Mater Syst Struct, 2006, 17, pp 483497. doi: 10.1177/1045389X06058795.CrossRefGoogle Scholar
Turner, T.L. and Patel, H.D. Analysis of SMA hybrid composite structures in MSC.Nastran and ABAQUS, J Intell Mater Syst Struct, 2007, 18, pp 435447. doi: 10.1177/1045389X06066699.CrossRefGoogle Scholar
Davis, B., Turner, T.L. and Seelecke, S. Measurement and prediction of the thermomechanical response of shape memory alloy hybrid composite beams, J Intell Mater Syst Struct, 2008, 19, pp 129143. doi: 10.1177/1045389X06073172.CrossRefGoogle Scholar
Bettini, P., Airoldi, A., Sala, G., Di Landro, L., Ruzzene, M. and Spadoni, A. Composite chiral structures for morphing airfoils: Numerical analyses and development of a manufacturing process, Compos Part B Eng, 2010, 41, pp 133147. doi: 10.1016/j.compositesb.2009.10.005.CrossRefGoogle Scholar
Abaqus®. 6.10 Documentation. Analysis User’s Guide, Volume IV: Elements, Dassault Systemes Simulia Corp., 2010, Providence (RI, USA).Google Scholar
Otsuka, K. and Wayman, C.M. Shape memory materials. Cambridge University Press, 1998.Google Scholar
Beber, V.C., Schneider, B. and Brede, M., Influence of temperature on the fatigue behaviour of a toughened epoxy adhesive, J Adhes, 2010, 92, pp 778794CrossRefGoogle Scholar
Da Silva, L.F.M. Improving bonding at high and low temperature, In: Dillard, D.A. (Ed.), Advances in structural adhesive bonding, Woodhead Publishing, 2010, pp 516546, doi: 10.1533/9781845698058.4.516CrossRefGoogle Scholar
Balakrishnan, V., Dinh, T., Phan, H-P., Dao, D.V. and Nguyen, N.-T. A generalized analytical model for Joule heating of segmented wires, J Heat Transfer, 2018, 140 (7), doi: 10.1115/1.4038829CrossRefGoogle Scholar