No CrossRef data available.
Published online by Cambridge University Press: 04 July 2016
This paper describes the development of a finite difference method that solves the boundary-layer equations for three-dimensional compressible turbulent flows. The most prominent achievements are the employment of a Newton technique for the simultaneous solution of all governing equations, an option to choose an algebraic or a k-ε eddy-viscosity turbulence model, and the flexible use of curvilinear coordinates. The method is validated by comparisons with a number of experimental and theoretical data sets of three-dimensional, compressible and incompressible, steady and unsteady boundary layers. In parallel, the performance of a three-dimensional compressible industrial integral boundary-layer technique is evaluated by comparisons with experimental test cases and with the results of the field method.