Published online by Cambridge University Press: 27 January 2016
A scale model of aerial refuelling drogue is built and tested to investigate active drogue stabilisation and control concepts. A set of aerodynamic control surfaces is implemented to a conventional, aerodynamically stabilised refuelling drogue. The control surfaces are designed to reduce the response of the drogue motion to atmospheric disturbance and tanker motion. This paper presents the details of design concept and experimental results based on wind-tunnel testing of a ⅓ scale model fabricated for this study. To investigate the proposed active control concept, a dynamic test rig is built for wind-tunnel experiment. The rig basically represents a hose-drogue system in terms of a 4 degree-of-freedom (DoF), single link pendulum model. System identification technique is used to obtain a drogue dynamic model, based on which a feedback control law is developed. Closed-loop dynamic testing is carried out to evaluate the effectiveness of the aerodynamic surface control module and feedback control law.