Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-22T04:25:04.445Z Has data issue: false hasContentIssue false

Design aspects of the adaptive wing — the elastic trailing edge and the local spoiler bump

Published online by Cambridge University Press:  04 July 2016

H. P. Monner
Affiliation:
DLR Institute of Structural Mechanics, Braunschweig, Germany
E. Breitbach
Affiliation:
DLR Institute of Structural Mechanics, Braunschweig, Germany
Th. Bein
Affiliation:
University of Magdeburg, Magdeburg, Germany
H. Hanselka
Affiliation:
University of Magdeburg, Magdeburg, Germany

Abstract

Market research predicts a large growth in numbers of passengers as well as airfreight volume for the aircraft industry. An expected concomitant increase in competition for the European aircraft industry demands that the efficiency of new aircraft has to be drastically improved. One approach to achieve this is the aerodynamic optimisation of the wing. The fixed wing is designed optimally only for one flight condition. This flight condition is described by the parameters altitude, Mach number and aircraft weight which vary continuously during the mission of the aircraft. Therefore, the aircraft is just periodically near the chosen design point. To compensate for this major disadvantage, an adaptive wing for optimal adaptation and variation of the profile geometry to the actual flight conditions is under development. DaimlerChrysler Aerospace Airbus, DaimlerChrysler Research and the German Aerospace Centre (DLR) are working as project partners on concepts for a variable camber and a local spoiler bump. In this paper structural concepts developed by the German Aerospace Centre for both objectives will be presented. The concepts are designed under the aspect of adaptive structural systems and require a high integration of actuators, sensors and controllers in the structure. Special aspects of the design will be discussed and first results, analytical, numerical as well as experimental, will be presented. Part of the concept design is also the development of new actuators optimised for the specific problem. A new actuator concept for the spoiler bump based on a cylindrical tube and activated either by pressure or multifunctional materials (e.g. shape memory alloys) will additionally be shown.

Type
Research Article
Copyright
Copyright © Royal Aeronautical Society 2000 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kelm, R., Kebebusch, B., Klug, H. G., Thiele, H.-H. and Vahle, K.-H. Grenzen Flugtechnischer Entwicklung: <berlegungen zum mittel/ langfristigen Potential der Treibstoffeinsparungen und Emissionsreduzierung im zivilen Luftverkehr, DGLR-Jahrestagung, DGLR-JT97-106, Munich, August 1997.Google Scholar
2. Ganzer, U. Gasdynamik, Springer Verlag, Berlin, 1988.Google Scholar
3. Ashill, P.R., Fulker, L.J. and Shires, A. A novel technique for controlling shock strength of laminar flow airfoil sections, 1st European Forum on Laminar How Technology, Paper No 92-01-022, Hamburg, 1992.Google Scholar
4. Gildemeister, L. Aerodynamische Grundsatzuntersuchungen über adaptive Hautstrukturen im Stoßbereich transsonischer Tragflügel, Diplomarbeit, TU Berlin, 1996.Google Scholar
5. Knauer, A. Die Leistungsverbesserung transsonischer Profile durch Konturmodifikationen im StoßBbereich, DLR-Forschungsbericht 98-03, 1998.Google Scholar
6. Wolmir, A.S. Biegsame Platlen und Schalen, VEB Verlag für Bauwesen Berlin, 1962.Google Scholar
7. Albus, J. Analytische und semi-analytische Berechnungsmethoden zur Auslegung zylindrischer Schalenstrukturen beliebiger Querschnittsform, Verlag Shaker, Aachen 1995.Google Scholar
8. Spillman, J.J. The use of variable camber to reduce drag, weight and costs of transport aircraft, Aeronaut J, 1992, 96, (951), pp 19.Google Scholar
9. Greff, E. The development and design integration of a variable camber wing for long/medium range aircraft, Aeronaut J, 1990, 94, (939), pp 301310.Google Scholar
10. Hilbig, H. and Wagner, H. Variable wing camber control for civil transport aircraft, ICAS Procedings, ICAS-84-5.2.1, pp 107112, Toulouse, 1984.Google Scholar
11 Szodruch, J. The influence of camber variation on the aerodynamics of civil transport aircraft, AIAA-Paper 85-0353, Reno, November 1985.Google Scholar
12. Renken, J.H. Mission adaptive wing camber control systems for transport aircraft, AIAA Paper 85-5006, Colorado Springs, October 1995.Google Scholar
13. Ahrendt, H. Zusammenstellung der Basis-Anforderungen zu System- Konzeption des Adaptiven Flügels, Daimler Benz Aerospace, Bremen, (internal document), April 1997.Google Scholar
14. Monner, H.P. Anströmprofil mit variabler Profiladaption, German Patent Application 197 41 326.9, 1997.Google Scholar
15. Monner, H.P. and Piening, M. Tragflügel mit variabler Profiladaption, German Patent Application 197 41 490.7, 1997.Google Scholar