Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-22T15:15:02.319Z Has data issue: false hasContentIssue false

Cumulative Damage Problems in Aircraft Structures and Materials

Published online by Cambridge University Press:  04 July 2016

J. Schijve*
Affiliation:
National Aerospace Laboratory NLR, Amsterdam

Extract

Fatigue in aircraft structures is a problem for which quantitative and generally accepted solutions are not available as yet. Even in recent years significant fatigue failures in aircraft structures have occurred. Some of these failures can be attributed to either poor design or underestimating of the fatigue environment. Unfortunately such statements are of little help since there are a confusingly large number of aspects involved. For a designer considering fatigue problems, experience, qualitative understanding and a good intuition are therefore essential.

Type
Supplementary Paper
Copyright
Copyright © Royal Aeronautical Society 1970 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Palmgren, A. Die Lebensdauer von Kugellagern. Z. Ver. Deut. Ing., Vol 68, p 339, 1924.Google Scholar
2. Miner, M. A. Cumulative damage in fatigue. J. Appl. Mech., Vol 12, p A159, 1945.Google Scholar
3. Smith, C. R. Linear strain theory and the Smith method for predicting fatigue life of structures for spectrum type loading. Aerospace Research Laboratories, USAF, Report ARL 64-55, April 1964.Google Scholar
4. Heywood, R. B. The effect of high loads on fatigue. IUTAM Colloquium on Fatigue, May 1955, Stockholm, Ed. by Weibull, W. and Odquist, F. K. G., Springer-Verlag, Berlin, p 92.Google Scholar
5. Schijve, J. The endurance under program-fatigue testing. Full-scale Fatigue Testing of Aircraft Structures, 1st ICAF Symposium, Amsterdam 1959. Ed. by Plantema, F. J. and Schijve, J., Pergamon Press, Oxford, p 41, 1961. Also NLR MP 178, Amsterdam.Google Scholar
6. Gassner, E., Performance fatigue testing with respect to aircraft design. Fatigue in Aircraft Structures, Ed. by Freudenthal, A. M., Academic Press, New York, p 178, 1956.Google Scholar
7. Gassner, E. and Schütz, W. Assessment of allowable design stresses and the corresponding fatigue life. Fatigue Design Procedures, 4th ICAF Symposium, Munich 1965. Ed. by Gassner, E. and Schütz, W., Pergamon Press, Oxford.Google Scholar
8. Kirkby, W. T. and Edwards, P. R. Variable amplitude loading approach to material evaluation and component testing and its application to the design procedures. Fatigue Design Procedures, 4th ICAF Symposium, Munich 1965. Ed. by Gassner, E. and Schütz, W., Pergamon Press, Oxford.Google Scholar
9. Schütz, W. Über eine Beziehung zwischen der Lebensdauer bei konstanter und bei veränderlicher Beanspruchungsamplitude und ihre Anwendbarkeit auf die Bemessung von Flugzeugbauteilen. Z. für Flugwissenschaften, Vol 15, p 407, 1967.Google Scholar
10. Jacoby, G. Comparison of fatigue lives under conventional program loading and digital random loading. Paper presented at the ASTM Fall Meeting, Atlanta, 29 Sep.-4 Oct. 1968.Google Scholar
11. Schijve, J., Jacobs, F. A., Tromp, P. J. Crack propagation in aluminium alloy sheet materials under flight simulation loading. NLR TR 68117, Amsterdam, December 1968.Google Scholar
12. Bullen, N. I., The chance of a rough flight. Royal Aircraft Establishment, TR No 65039, February 1965.Google Scholar
13. Hoblit, F. H., Paul, N., Shelton, J. D. and Asford, F. E. Development of a power-spectral gust design procedure for civil aircraft. FAA Techn. Report ADS-53, January 1966.Google Scholar
14. Naumann, C. A. Evaluation of the influence of load randomization and of ground-to-air cycles on fatigue life. NASA TD D-1584, October 1964.Google Scholar
15. Schijve, J., Broek, D., De Rijk, P., Nederveen, A. and Sevenhuysen, P. J. Fatigue tests with random and programmed load sequences with and without ground-to-air cycles. A comparative study on full-scale wing center sections. NLR Report S.613, Amsterdam, Dec. 1965. Also AFFDLTR- 66-143, Oct. 1966.Google Scholar
16. Gassner, E. and Jacoby, G. Betriebsfestigkeitsversuche zur Ermittlung zulassiger Entwurfsspannungen für die Fltigelunterseite eines Transportfiugzeuges. Luftfahrttechnik- Raumfahrttechnik, Vol 10, p 6, 1964.Google Scholar
17. Schijve, J. The relation between the endurances under constant-amplitude and variable amplitude loading. NLR TM M.2050, Amsterdam, August 1958.Google Scholar
18. Schijve|J. Analysis of the fatigue phenomenon in aluminium alloys. NLR TR M.2122, Amsterdam, July 1964.Google Scholar
19. Schijve, J. Significance of fatigue cracks in micro-range and macro-range. Fatigue Crack Propagation, ASTM STP 415, Am. Soc. Testing Mats., p 415, 1967. Also NLR MP 243, Amsterdam, May 1966.Google Scholar
20. Rice, J. R. Mechanics of crack tip deformation and extension by fatigue. Fatigue Crack Propagation, ASTM STP 415, Am. Soc. Testing Mats., p 247, 1967.Google Scholar
21. Mcmillan, J. C. and Pelloux, R. M. N. Fatigue crack propagation under program and random loads. Fatigue Crack Propagation, ASTM STP 415, Am. Soc. Testing Mats., p 505, 1967.Google Scholar
22. Schijve, J. Fatigue crack propagation in light alloy sheet material and structures. Advances in Aeronautical Sciences, Pergamon Press, Vol 3, p 387, 1961. Also NLR MP 195, Amsterdam, August 1960.Google Scholar
23. Hudson, C. M. and Hardrath, H. F. Effects of changing stress amplitude on the rate of fatigue-crack propagation in two aluminium alloys. NASA TN D-960, September 1961.Google Scholar
24. Hudson, C. M. and Hardrath, H. F. Investigation of the effects of variable-amplitude loadings on fatigue crack propagation patterns. NASA TN D-1803, August 1963.Google Scholar
25. Gassner, E. and Jacoby, G. Experimentelle und Rechnerische Lebensdauerbeurteilung von Bauteilen mit Start- Lande-Lastwechsel. Luftfahrttechnik-Raumfahrttechnik, Vol 11, p 138, 1965.Google Scholar
26. Gassner, E. Festigkeitsversuche mit wiederholter Beanspruchung im Flugzeugbau. Luftwissen, Vol 6, p 61, 1939.Google Scholar
27. Swanson, S. R. Random load fatigue testing: A state of the art survey. Materials Research and Standards, Vol 8, No. 4, p 11, April 1968.Google Scholar
28. Jacoby, G. Comparison for fatigue life estimation processes for irregularly varying loads. Proc. 3rd Conference on Dimensioning and Strength Calculation, Hungarian Academy of Sciences, p 81, Budapest, 1968.Google Scholar
29. Schijve, J. and De Rijk, P. The crack propagation in two aluminium alloys in an indoor and an outdoor environment under random and programmed load sequences. NLR-TR M.2156, Amsterdam, November 1965.Google Scholar
30. Figge, I. E. and Hudson, C. M. Crack propagation, delayed failure, and residual static strength of titanium, aluminium and stainless steel alloys in aqueous environments. NASA TN D-3825, February 1967.Google Scholar
31. Raithby, K. D. A comparison of predicted and achieved fatigue lives of aircraft structures. Fatigue of Aircraft Structures, 2nd ICAF Symposium, Paris 1961. Ed. by Barrois, W. and Ripley, E. L., Pergamon Press, Oxford, 1963.Google Scholar
32. Lowndes, H. B. and Miller, W. B. The U.S. Air Force Weapon Systems fatigue certification program. Fatigue Design Procedures, 4th ICAF Symposium, Munich 1965. Ed. by Gassner, E. and Schtttz, W., Pergamon Press, Oxford.Google Scholar
33. Harpur, N. F. and Troughton, A. J. The value of full-scale fatigue testing. Fatigue Design Procedures, 4th ICAF Symposium, Munich 1965. Ed. by Gassner, E. and Schtitz, W., Pergamon Press, Oxford.Google Scholar
34. Branger, J. The full-scale fatigue test on the DH-112 Venom AC carried out on the fatigue history simulator by F. and W. Emmen. Eidg. Flugzeugwerk Emmen, Bericht S-163 1964.Google Scholar
35. Hardrath, H. F. Cumulative Damage Fatigue, an Interdiciplinary Approach, 1963. Ed. by Burke, J. J., Reed, N. L. and Weiss, V., Syracuse Univ. Press, p 345, 1964.Google Scholar
36. Lambert, J. A. B. and Troughton, A. J. The importance of service inspection in aircraft fatigue. Paper presented at the 5th ICAF Symposium, Melbourne, May 1967.Google Scholar
37. Williams, J. K. The airworthiness approach to structural fatigue. Fatigue Design Procedures, 4th ICAF Symposium, Munich 1965. Ed. by Gassner, E. and Schtitz, W., Pergamon Press, Oxford.Google Scholar
38. Morgan, R. C. Some thoughts on the economics of fatigue. Paper presented at the 5th ICAF Symposium, Melbourne, May 1967.Google Scholar
39. Axisa, R. and Graff, D. Economic aspects of fatigue in commercial airlines. Paper presented at the 5th ICAF Symposium, Melbourne, May 1967.Google Scholar
40. Rhomberg, H. Economic and operational aspects of fatigue figures of a Swiss ground attack-fighter. Paper presented at the 5th ICAF Symposium, Melbourne, May 1967.Google Scholar