Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-22T04:11:02.708Z Has data issue: false hasContentIssue false

Cross-flow and vorticity patterns in the corner boundary layer at different corner angles

Published online by Cambridge University Press:  04 July 2016

S. R. Wilkinson
Affiliation:
Department of Applied Mathematics, University of Western Ontario, London, Ontario, Canada
M. Zamir
Affiliation:
Department of Applied Mathematics, University of Western Ontario, London, Ontario, Canada

Summary

Boundary layer equations are derived for viscous high-Reynolds number flow along streamwise concave corners using a simple non-orthogonal Cartesian co-ordinate system. The equations are solved numerically for corner angles of 30°, 60°, 90°, 120° and 150°, with emphasis given to the cross-flow velocity and streamwise vorticity fields. The results are discussed in the context of the inherent instability of this boundary layer at high Reynolds numbers.

Type
Research Article
Copyright
Copyright © Royal Aeronautical Society 1984 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Barclay, W. H. Experimental investigations of the laminar flow along a straight 135° corner. Aeronautical Quarterly, 1973. 24, 147.Google Scholar
2. Barclay, W. H. and Ridha, A. H. Flow in streamwise corners of arbitrary angle. AIAA Journal, 1980. 18, 1413.Google Scholar
3. Desai, S. S. and Mangler, K. W. Incompressible laminar boundary layer flow along a corner formed by two intersecting planes. Royal Aircraft Establishment TR 74062, 1974.Google Scholar
4. Ghia, K. N. Incompressible streamwise flow along an unbounded corner. AIAA Journal, 1975. 12, 355.Google Scholar
5. Nikuradse, J. Untersuchungen über die Geschwindigkeits- verteilung in turbulenten Strömungen. Thesis, Göttingen. (Also: Forschungsheft, 281, Berlin).Google Scholar
6. Prandtl, L. Über die ausgebildete Turbulenz. Proceedings of the 2nd International Congress for Applied Mechanics, Zurich, 1926; Orell Fussli, Zurich, 1927. Seealso: Fluid Dynamicsby L. Prandtl, (page 148). Blackie & Son Ltd, London 1957.Google Scholar
7. Rubin, S. G. Incompressible flow along a corner. Journal of Fluid Mechanics, 1966. 26, 97.Google Scholar
8. Rubin, S. G. and Grossman, B. Viscous flow along a corner: Numerical solution of the corner equations. Q Appl Math, 1971, 29, 169.Google Scholar
9. Schlichting, H. Boundary Layer Theory. Seventh Edition, McGraw-Hill Book Company, 1979.Google Scholar
10. Stewartson, K. Viscous flow past a quarter-infinite plate. J Aeronaut Sci, 1961, 28, 1.Google Scholar
11. Wilkinson, S. R. Boundary layer flow streamwise concave corners. PhD Thesis, University of Western Ontario, London, Ontario, Canada, 1983.Google Scholar
12. Zamir, M. Similarity and stability of the laminar boundary layer in a streamwise corner. Proc R Soc London A, 1981, 377, 269.Google Scholar
13. Zamir, M. and Young, A. D. Experimental investigations of the boundary layer in a streamwise corner. Aeronautical Quarterly, 1970. 21, 313.Google Scholar