Article contents
Consideration of structural constraints in passive rotor blade design for improved performance
Published online by Cambridge University Press: 27 January 2016
Abstract
This design study applied parameterisation to rotor blade for improved performance. In the design, parametric equations were used to represent blade planform changes over the existing rotor blade model. Design variables included blade twist, sweep, dihedral, and radial control point. Updates to the blade structural properties with changes in the design variables allowed accurate evaluation of performance objectives and realistic structural constraints – blade stability, steady moments (flap bending, chord bending, and torsion), and the high g manoeuvring pitch link loads. Performance improvement was demonstrated with multiple parametric designs. Using a parametric design with advanced aerofoils, the predicted power reduction was 1·0% in hover, 10·0% at μ = 0·30, and 17·0% at μ = 0·40 relative to the baseline UH-60A rotor, but these were obtained with a 35% increase in the steady chord bending moment at μ = 0·30 and a 20% increase in the half peak-to-peak pitch link load during the UH-60A UTTAS manoeuvre Low vibration was maintained for this design. More rigorous design efforts, such as chord tapering and/or structural redesign of the blade cross section, would enlarge the feasible design space and likely provide significant performance improvement.
- Type
- Research Article
- Information
- The Aeronautical Journal , Volume 119 , Issue 1222: A Rotorcraft Special Issue , December 2015 , pp. 1513 - 1539
- Copyright
- Copyright © Royal Aeronautical Society 2015
References
- 6
- Cited by