Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T19:55:37.507Z Has data issue: false hasContentIssue false

Computational and experimental investigations of low-Reynolds-number flows past an aerofoil

Published online by Cambridge University Press:  03 February 2016

W. Yuan
Affiliation:
Institute for Aerospace Research (IAR), National Research Council (NRC) Canada, Ottawa, Ontario, Canada
M. Khalid
Affiliation:
Institute for Aerospace Research (IAR), National Research Council (NRC) Canada, Ottawa, Ontario, Canada
J. Windte
Affiliation:
Institute of Fluid Mechanics (ISM), Technical University of Braunschweig (TUBS), Braunschweig, Germany
U. Scholz
Affiliation:
Institute of Fluid Mechanics (ISM), Technical University of Braunschweig (TUBS), Braunschweig, Germany
R. Radespiel
Affiliation:
Institute of Fluid Mechanics (ISM), Technical University of Braunschweig (TUBS), Braunschweig, Germany

Abstract

This paper presents investigations of low-Reynolds-number flows past an SD7003 aerofoil at Re = 60k, where transition takes place across a laminar separation bubble (LSB). Results of experimental measurements and numerical calculations are analysed and discussed. In particular, reasonably good results were obtained using two different numerical approaches: Large-eddy simulation (LES) that demonstrated vortical structures at different transition stages, and where the transition occurred naturally; unsteady Reynolds-averaged Navier-Stokes (URANS) simulations for several turbulence models based on the ω-length-scale equation, coupled to a linear stability solver to predict the transition position.

Type
Research Article
Copyright
Copyright © Royal Aeronautical Society 2007 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Würz, W., Hitzdrahtmessungen zum laminar-turbulenten Strömungs-umschlag in anliegenden Grenzschichten und Ablöseblasen sowie Vergleich mit der laminaren Stabilitätstheorie und empirischen Umschlagskriterien, Dissertation, Universität Stuttgart, 1995.Google Scholar
2. Lang, M., Marxen, O., Rist, U. and Wagner, S., Experimental and numerical investigations on transition in a laminar separation bubble, New Results in Numerical and Experimental Fluid Mechanics III: Contributions to the 12th STAB/DGLR symposium, Stuttgart, Germany, November 2000, edited by Wagner, S., Rist, U., Heinemann, H.J. and Hilbig, R., NNFM, 77, Vieweg, Braunschweig, 2002, pp 207214.Google Scholar
3. Marxen, O., Rist, U. and Wagner, S., The effect of spanwise-modulated disturbances on transition in a 2D separated boundary layer, AIAA Paper 2003-0789, 2003.Google Scholar
4. Rist, U., Instability and transition mechanisms in laminar separation bubbles, RTO-AVT-VKI Lecture Series 2004, 24-28 November, 2003.Google Scholar
5. Mary, I. and Sagaut, P., Large eddy simulation of flow around an airfoil near stall, AIAA J, 2002, 40, (6), pp 11391145.Google Scholar
6. Shan, H., Li, J. and Liu, C., Direct numerical simulation of flow separation around a NACA 0012 Airfoil, Computers and Fluids, 34, (9), 2005 pp, 10961114.Google Scholar
7. Kroll, N., Rossow, C.C., Schwamborn, D., Becker, K. and Heller, G., MEGAFLOW — A numerical flow simulation tool for transport aircraft design, ICAS Congress, Toronto, Canada, Paper No 1105, 2002.Google Scholar
8. Yuan, W. and Khalid, M., Computation of unsteady flows past aircraft wings at low Reynolds numbers, Canadian Aeron and Space J, 2004, 50, (4), pp. 261271.Google Scholar
9. Nerger, D., Kähler, C.J. and Radespiel, R., Zeitaufgelöste PIV-Messungen an einem schwingenden SD7003-Profil bei Re=60000, Lasermethoden in der Strömungsmesstechnik, 11. GALA Fachtagung, Braunschweig, 9-11 September, 2003.Google Scholar
10. Patankar, S.V., Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corporation, Washington New York London, 1980.Google Scholar
11. Ferziger, J.H. and Peric, M., Computational Methods for Fluid Dynamics, Springer-Verlag, Berlin & Heidelberg, 1996.Google Scholar
12. Smagorinsky, J., General circulation experiments with primitive equations, Monthly Weather Review, 1963, 93, pp 99164.Google Scholar
13. Sagaut, P., Large-Eddy Simulation of Incompressible Flows – an Introduction, Springer-Verlag, Berlin, 2001.Google Scholar
14. Lenormand, E., Sagaut, P., Phuoc, L., and Comte, P., Subgrid-scale models for large-eddy-simulation of compressible wall bounded flows, AIAA J, 2000, 38, (8), pp 13401350.Google Scholar
15. Eisfeld, B., Numerical simulation of aerodynamic problems with Reynolds stress turbulence models, 14th DGLR/STAB Symposium, 2004.Google Scholar
16. Eisfeld, B., Turbulence models in FLOWer, in: MEGAFLOW — Numerical flow simulation for aircraft design, in: Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Vol 89, Springer-Verlag, 2005, pp. 6377 Google Scholar
17. Schrauf, G., Coast3 – A Compressible Stability Code, User’s guide and tutorial, Technical Report EF 040/98, Daimler-Benz Aerospace Airbus GmbH, Bremen, Germany, 1998.Google Scholar
18. Schrauf, G., An inverse Rayleigh iteration for complex band matrices, ALGORITHM 696, ACM TOMS, 1991, 17, pp 335340.Google Scholar
19. Smith, A.M.O. and Gamberoni, N., Transition, pressure gradient, and stability theorie, Report ES 26 388, Douglas Aircraft, El Segunda, California, 1956.Google Scholar
20. Van Ingen, J.L., A suggested semi-empirical method for the calculation of the boundary layer transition region, Report VTH-74, Delft University of Technology, Department of Aero Engineering, 1956.Google Scholar
21. Rist, U., Zur Instabilität und Transition in laminaren Ablöseblasen, Habilitation, Universität Stuttgart, Shaker Verlag, Aachen, 1999.Google Scholar
22. Watmuff, J.H., Evolution of a wave packet into vortex loops in a laminar separation bubble, J. Fluid Mech, 1999, (397), pp 119169.Google Scholar
23. Stock, H.W., Airfoil validation using coupled Navier-Stokes and eN transition prediction methods, J Aircr, 39, (1), 2002.Google Scholar
24. Mack, L.M., Transition and Laminar Instability, Jet Propulsion Laboratory Publication 77-15, Pasadena, CA, 1977.Google Scholar
25. Ol, M., Mcauliffe, B.R., Hanff, E.S., Scholz, U. and Kaehler, Ch., Comparison of laminar separation bubble measurements on a low Reynolds number airfoil in three facilities, AIAA 2005-5149, 2005.Google Scholar
26. Selig, M. S., Guglielmo, J.J., Broeren, A.P.G. and Giguere, P., Summary of Low-Speed Airfoil Data, SoarTech Aero Publications, H. A. Stokely, Virginia Beach, VA, USA, 1995.Google Scholar
27. Selig, M. S., Donovan, J.F. and Fraser, D.B., Airfoils at low speeds, Soartech 8, SoarTech Publications, H. A. Stokely, Virginia Beach, VA, USA, 1989.Google Scholar
28. Windte, J., Radespiel, R. and Scholz, U., RANS Simulation of the transitional flow around airfoils at low Reynolds numbers for steady and unsteady onset conditions, Proc. Specialists Meeting on Enhancement of NATO Military Flight Vehicle Performance by Management of Interacting Boundary Layer Transition and Separation, Prague, Czech Republic, RTO-MP-AVT-111-P-03, 4–7 October, 2004.Google Scholar
29. Windte, J., Scholz, U. and Radespiel, R., Validation of the RANS-simulation of laminar separation bubbles on airfoils, Aerosp Sci and Tech, 2006, 10, pp 484494.Google Scholar
30. Jameson, A.J., Time dependant calculations using multigrid with applications to unsteady flows past airfoil and wings, AIAA Paper 91-1596, 1991.Google Scholar
31. Menter, F.R., Two-equation eddy-viscosity transport turbulence model for engineering applications, AIAA J, 1994, 32, pp 15981605.Google Scholar
32. Wilcox, D.C., Turbulence Modeling for CFD, DCW Industries, La Cañada, California, 1998.Google Scholar
33. Wallin, S. and Johansson, A., An explicit algebraic Reynolds stress model for incompressible and compressible turbulent flows, J. Fluid Mech, 2000, 403, pp 89132.Google Scholar
34. Rung, T. and Thile, F., Computational modeling of complex boundary-layer flows, Proceedings 9th International Symposium on Transport Phenomena in Thermal-Fluid Engineering, Singapore, 1996.Google Scholar
35. Rung, T., Lübcke, H., Franke, M., Xue, L., Thiele, F. and Fu, S., Assessment of explicit algebraic stress models in transonic flows, Engineering Turbulence Modelling and Experiments 4, edited by Rodi, W. and Laurence, D., Elsevier, Amsterdam, 1999, pp 659668.Google Scholar
36. Yuan, W., Xu, H., Khalid, M. and Radespiel, R., A parametric study of LES on laminar-turbulent transitional flows past an airfoil, Int J Fluid Dynamics, 2006, 20, (1), pp 4554.Google Scholar
37. Yuan, W., Mamou, M., Khalid, M., Wokoeck, R. and Radespiel, R., LES/RANS simulations of airfoil flows near combined leading-edge trailing-edge stall, 25th AIAA Applied Aerodynamics Conference, San Francisco, 5–8 June, 2006 Google Scholar
38. Guglielmo, J.J. and Selig, M.S., Spanwise variations in profile drag for airfoils at low Reynolds numbers, J Aircr, 1996, 33, (4).Google Scholar
39. Mamou, M., Yuan, W., Khalid, M., Wokoeck, R. and Radespiel, R., Transition prediction in low Reynolds airfoil flows using finite element method coupled with the eN method, 25th AIAA Applied Aerodynamics Conference, San Francisco, 5–8 June, 2006.Google Scholar
40. Rayleigh, L., On the stability of certain fluid motions, Scientific Papers, Vol. 1, Cambridge University Press, 1880, pp 474487.Google Scholar
41. Tollmien, W., Ein allgemeines Kriterium der Instabilitaet laminarer Geschwindigkeits Verteilungen, Nachr. Ges. Wiss. Goettingen, Math. Phys. Klasse, Fachgruppe I, 1935, 1, pp. 79114.Google Scholar
42. Yang, Z. and Voke, P., Large eddy simulation of boundary-layer separation and transition at a change of surface curvature, J Fluid Mech, 2001, 439, pp 305333.Google Scholar
43. Schlichting, H., Boundary-Layer Theory, 6th edition, McGraw-Hill, New York, 1968.Google Scholar
44. Ho, C.M. and Huerre, P., Perturbed Free Shear Layers, Ann Rev Fluid Mech, 1984, 16, pp 365424.Google Scholar