Published online by Cambridge University Press: 03 February 2016
The SMARTFIRE computational fluid dynamics (CFD) software was used to predict the ‘possible’ behaviour of airflow as well as the spread of fire and smoke within a Swissair configured McDonnell Douglas MD-11 commercial transport aircraft. This work was undertaken by the Fire Safety Engineering Group (FSEG) of the University of Greenwich as part of Transportation Safety Board (TSB) of Canada, Fire & Explosion Group’s investigation into the in-flight fire occurrence onboard Swissair Flight 111 (SR111): TSB Report Number A98H0003. The main aims of the CFD analysis were to develop a better understanding of the possible effects, or lack thereof, of numerous variables relating to the in-flight fire. This assisted investigators in assessing possible fire dynamics for cause and origin determination. In Part 1, the numerical analyses to pre-fire airflow patterns within the cockpit and its vicinity are presented. The pre-fire simulations serve two ends. One is to provide insight into the flow patterns within the cockpit and its vicinity and further supportive numerical evidence for the airflow flight test observations. The other is to provide plausible initial flow conditions for fire simulations. In this paper, some flow patterns at a number of primary locations within the cockpit and its vicinity are highlighted and the predicted flow patterns are compared with the findings from the airflow flight tests. The predicted patterns are found to be in good qualitative agreement with the experimental test findings.