Published online by Cambridge University Press: 27 January 2016
A Parabolised Navier-Stokes (PNS) flow solver is used to predict the aerodynamic heating on the surface of a hypersonic vehicle. This case study highlights some of the main heat flux sensitivies to various conditions for a full-scale vehicle and illustrates the use of different complimentary methods in assessing the heat load for a realistic application. Different flight phases of the vehicle are considered, with freestream conditions from Mach 4 to Mach 8 across a range of altitudes. Both laminar and turbulent flows are studied, together with the effect of the isothermal wall temperature, boundary-layer transition location and body incidence. The effect of the Spalart-Allmaras and Baldwin-Lomax turbulent models on the heat transfer distributions is assessed. A rigorous assessment of the computations is conducted through both iterative and grid convergence studies and a supporting experimental investigation is performed on a 1/20th scale model of the vehicle’s forebody for the validation of the numerical results. Good agreement is found between the PNS predictions, measurements and empirical methods for the vehicle forebody. The present PNS approach is shown to provide useful predictions of the heat transfer over the axisymmetric vehicle body. A highly complex flow field is predicted in the fin-body-fin region at the rear of the vehicle characterised by strong interference effects which limit the predictions over this region to a predominately qualitative level.