Published online by Cambridge University Press: 04 July 2016
There is a growing interest in the analysis and design of waffle cylinders because of the advantages of integrally stiffened shell wall construction. The usual approach to the stability analysis of a stiffened shell has been to replace it by an equivalent orthotropic shell. The eccentricity of the stiffener has a large effect on the critical load in cylindrical shells, and outside stiffening has been found to be stronger than inside stiffening. Inversion of the stiffener eccentricity effect has been observed in cylinders under hydrostatic pressure loading. Naturally, regardless of whether the stiffened cylinder is considered as an orthotropic continuum or a composite of discrete elements, the treatment cannot be complete if it fails to include the coupling between bending and extensional forces and deformations resulting from one-sidedness of the stiffeners.