Published online by Cambridge University Press: 04 July 2016
In the autumn of 1902 the Wright brothers spent just over eight weeks at their test site in the Kill Devil Hills near Kitty Hawk, North Carolina, testing their third Glider design. During the trial period they implemented an inter-linked roll-yaw control system. Together with the forward canard surface, this gave them control over vertical and horizontal components of the flight path. They were also able to hone and perfect their piloting skills. In just two days in the final week, they made about 250 glides. The success of the trials instilled the confidence in the Wright brothers to proceed rapidly to the construction of a powered aircraft. Within a month of returning to Dayton, they were writing to engine manufacturers with their specification – an engine that would develop eight to nine brake horse power, weigh no more than 180lb and be free from vibration; they would not find a suitable powerplant and had to design and build their own. The invention of the powered aeroplane in 1903 somewhat overshadows the earlier critical flight control developments, but the birth of flight control in 1902 opened the way for aviation to flourish. With the aid of modern flight science techniques – wind-tunnel testing, computational flight dynamics and piloted simulation, this paper examines the technology of the Wrights' 1902 glider. The research forms a part of the Liverpool Wright Project, aiming to bring to life the Wright brothers' achievements in this centenary period. Wilbur and Orville Wright are recognised by many as the first aeronautical engineers and test pilots. In so many ways they set standards that today's engineers and organisations benefit from. Their work in the period 1901 to 1902 reflects their genius and the paper reviews this work in detail, examining the design, aerodynamic characteristics and flying qualities of the aircraft that first featured a practical three-axis control system.