Published online by Cambridge University Press: 04 July 2018
The effect of inertial forces on the Structural Dynamics (SD) behaviour of Elastic Flapping Wings (EFWs) is investigated. In this regard, an analytical modal-based SD solution of EFW undergoing a prescribed rigid body motion is initially derived. The formulated initial-value problem is solved analytically to study the EFW structural responses, and sensitivity with respect to EFWs’ key parameters. As a case study, a rectangular wing undergoing a prescribed sinusoidal motion is simulated. The analytical solution is derived for the first time and helps towards a conceptual understanding of the overall EFW's SD behaviour and its analysis required in their designs. Specifically, the EFW transient and steady response in on-off servo condition is also attended.