Published online by Cambridge University Press: 28 July 2016
Complicated oscillatory systems may be broken down into component “ sub-systems ” for the purpose of vibration analysis. These will generally submit more readily to analytical treatment. After an introduction to the concept of receptance, the principles underlying this form of analysis are reviewed.
The dynamical properties of simple systems (in the form of their receptances) may be tabulated. By this means the properties of a complicated system may be found by first analysing it into convenient sub-systems and then extracting the properties of the latter from a suitable table. A catalogue of this sort is given for the particular case of conservative torsional systems with finite freedom.
The properties of the composite system which may be readily found in this way are (i) its receptances and (ii) its frequency equation. Tables are given of expressions for these in terms of the receptances of the component sub-systems. All of the tables may easily be extended. The tabulated receptances may also be used for determining relative displacements during free vibration in any principal mode.
A method of presenting information on the vibration characteristics of machinery, which is effectively due to Carter, is illustrated by means of an example. More general adoption by manufacturers of this method (which requires no more computational effort than must normally be made) would lead to enormous savings of labour in calculating natural frequencies of composite systems.