Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-22T04:19:30.718Z Has data issue: false hasContentIssue false

An investigation of aerodynamic behaviours and aerodynamic performance of a model wing formed from different profiles

Published online by Cambridge University Press:  16 November 2022

A. Aşkan
Affiliation:
Faculty of Aeronautics and Astronautics, Erciyes University, Kayseri, Turkey
S. Tangöz*
Affiliation:
Faculty of Aeronautics and Astronautics, Erciyes University, Kayseri, Turkey
M. Konar
Affiliation:
Faculty of Aeronautics and Astronautics, Erciyes University, Kayseri, Turkey
*
*Correspondence author. Email: [email protected]

Abstract

In this study, the aerodynamic performances and the flow separation behaviour of the wing profiles, used in the wing of Boeing 737-Classic aircraft, and a model wing formed of these profiles were investigated at 2 × 105 Reynolds number (Re) and different angles of attack ranging from −4° to the angle, which maximum lift point obtained. The experiments were conducted in a low-speed wind tunnel in Erciyes University Faculty of Aeronautics and Astronautics Aerodynamic Laboratory. Four profiles and the model wing, which was obtained from the combination of the four profiles were produced in a rectangular shape with dimensions of 0.21m × 0.21m. In the first part of this two-part study, the wing profiles were examined individually regarding aerodynamic performance and flow separation. In the second phase of the study, the aerodynamic performance and the flow separation behaviour of the model wing were examined and the results were compared with the data obtained from each profile. The study results showed that the slopes of the numerical graphics are generally quite consistent with experimental results. In addition, the pressure and velocity distributions have followed the normal trend until the angle-of-attack (AoA) of 20°. In contrast, the negative speed values and negative pressure zones have appeared on the profile above this angle. The air flowed as laminar on the profiles and the model wing until 20°, while laminar separation bubbles are begun to take place at about 24° AoA. Finally, the best aerodynamic performance has been obtained with the model wing.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of Royal Aeronautical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Lissaman, P.B.S. Low-reynolds-number airfoils, Ann. Rev. Fluid Mech., 1983, 15, pp 223239.CrossRefGoogle Scholar
Crompton, M.J. and Barrett, R.V. Investigation of the separation bubble formed behind the sharp leading edge of a flat plate at incidence, Proc. Inst. Mech. Eng. G J. Aerosp. Eng., 2000, 214, pp 157176.CrossRefGoogle Scholar
McCullough, G.B. and Gault, D.E., Examples of three representative types of airfoil-section stall at low speed, NACA TN, 1951, 2502, pp 153.Google Scholar
Roberts, W.B. Calculation of laminar separation bubbles and their effect on airfoil performance, AIAA J., 1980, 18, pp 2531.CrossRefGoogle Scholar
Lei, J., Guo, F. and Huang, C. Numerical study of separation on the trailing edge of a symmetrical airfoil at a low Reynolds number, Chinese J. Aeronaut., 2013, 26, 918925.CrossRefGoogle Scholar
Spalart, P.R. and Strelets, M.K., Mechanisms of transition and heat transfer in a separation bubble, J. Fluid Mech., 2000, 403, pp 329349.CrossRefGoogle Scholar
Houghton, D.T., Carpenter, E.L., Collicott, P.W. and Valentine, S.H. Aerodynamics for Engineering Students, Sixth Edition, Elsevier Ltd, United States, 2013.Google Scholar
Simpson, R.L. Turbulent boundary-layer separation, Ann. Rev. Fluid Mec., 1989, 21, pp 205234.CrossRefGoogle Scholar
Yang, Z., Haan, F.L., Hui, H. and Ma, H., An experimental investigation on the flow separation on a low-reynolds-number airfoil, In 45th AIAA Aerosp. Sci. Meet. Exhib, pp 111, 2007.Google Scholar
Zanin, B.Y., Kozlov, V.V. and Pavlenko, A.M. Control of flow separation from a model wing at low Reynolds numbers, Fluid Dyn., 2012, 47, pp 403410.CrossRefGoogle Scholar
Mack, S., Brehm, C., Heine, B., Kurz, A. and Fasel, H.F., Experimental investigation of separation and separation control on a laminar airfoil, In 4th AIAA Flow Control Conference, June. Seattle, WA, United States, 2008.CrossRefGoogle Scholar
Karasu, İ., Genç, M.S., Açikel, H.A. and Akpolat, M.T., An experimental study on laminar separation bubble and transition over an aerofoil at low reynolds number, In 30th AIAA Applied Aerodynamics Conference, Fluid Dynamics and Co-located Conferences, vol. 3, pp 19, 2012.CrossRefGoogle Scholar
Aşkan, A. and Tangöz, S. The impact of aspect ratio on aerodynamic performance and flow separation behavior of a model wing composed from different profiles, J. Energy Syst., 2018, 2, (4), pp 224237.CrossRefGoogle Scholar
Yilmaz, İ., Çam, Ö., Taştan, M. and Karci, A. Experimental investigation of aerodynamic performance of different wind turbine airfoils, Politeknik, 2016, 9, pp 577584.Google Scholar
Coleman, H.W. and Steele, G. Experimentation and Uncertainty Analysis for Engineers, 4th edition, Wiley, New York, 2018.CrossRefGoogle Scholar
Chen, P., Bai, C. and Wang, W. Experimental and numerical studies of low aspect ratio wing at critical Reynolds number, Eur. J. Mech. B/Fluids, 2016, 59, pp 161168.CrossRefGoogle Scholar
Langtry, R. and Menter, F. Transition modeling for general CFD applications in aeronautics, In 43rd AIAA Aerosp. Sci. Meet. Exhib., pp 1–14, 2005.CrossRefGoogle Scholar
Şugar Gabor, O., Koreanschi, A., Botez, R.M., Mamou, M. and Mebarki, Y. Numerical simulation and wind tunnel tests investigation and validation of a morphing wing-tip demonstrator aerodynamic performance, Aerosp. Sci. Technol., 2016, 53, pp 136153.CrossRefGoogle Scholar
Shields, M.C. and Mohseni, K. Aerodynamic stability modes of low aspect ratio wings, In AIAA Guid. Navig. Control Conf., pp 115, 2013.CrossRefGoogle Scholar
Zhang, Z., Hubner, J.P., Timpe, A., Ukeiley, L., Abudaram, Y. and Ifju, P. Effect of aspect ratio on flat – plate membrane airfoils, In 50th AIAA Aerosp. Sci. Meet. Incl. New Horizons Forum Aerosp. Expo., January, pp 1–15, 2012.CrossRefGoogle Scholar
Hu, H. and Yang, Z. An experimental study of the laminar flow separation on a low-reynolds-number airfoil, J. Fluids Eng., 2008, 130, pp 111.CrossRefGoogle Scholar
Worasinchai, S., Ingram, G. and Dominy, R. A low-Reynolds-number high-angle-of-attack investigation of wind turbine aerofoils, Proc. Inst. Mech. Eng. A: J. Power Energy, 2011, 225, pp 748763.CrossRefGoogle Scholar
Zhang, W., Zhang, Z., Chen, Z. and Tang, Q. Main characteristics of suction control of flow separation of an airfoil at low Reynolds numbers, Eur. J. Mech. B/Fluids, 2017, 65, pp 8897.CrossRefGoogle Scholar
Khakmardani, M.H., Soltani, M.R., Masdari, M. and Davari, A. An experimental investigation of transition point over a quasi-2D swept wing by using hot film, Proc. IMechE G: J. Aerosp. Eng., 2015, 229, (2), pp 243255.CrossRefGoogle Scholar
Soylak, M., Experimental investigation of aerodynamic performance of oscillating wings at low Re numbers, Proc. IMechE G: J. Aerosp. Eng., 2015, 230, (10), pp 18821902.CrossRefGoogle Scholar