Article contents
An integrated fault-tolerant control strategy for control surface failure in a fighter aircraft
Published online by Cambridge University Press: 11 August 2021
Abstract
Elevator failure may have fatal consequences for fighter aircraft that are unstable due to their high manoeuvrability requirements. Many studies have been conducted in the literature using active and passive fault-tolerant control structures. However, these studies mostly include sophisticated controllers with high computational load that cannot work in real systems. Considering the multi-functionality and broad operational prospects of fighter aircraft, computational load is very important in terms of applicability. In this study, an integrated fault-tolerant control strategy with low computational load is proposed without sacrificing the ability to cope with failures. This control strategy switches between predetermined controllers in the case of failure. One of these controllers is designed to operate in a non-failure condition. This controller is a basic controller that requires very little computational effort. The other controller operates when an asymmetric elevator failure occurs. This controller is a robust fault-tolerant controller that can fly the aircraft safely in case of elevator failure. The switching is decided by a failure detection system. The proposed integrated fault-tolerant control system is verified by non-linear F-16 flight simulations. These simulations show that the proposed method can cope with failures but requires less computational load because it uses a conventional controller in the case of no failure.
Keywords
- Type
- Research Article
- Information
- Copyright
- © The Author(s), 2021. Published by Cambridge University Press on behalf of Royal Aeronautical Society
References
- 1
- Cited by