Article contents
An experimental and numerical investigation of under-expanded turbulent jets
Published online by Cambridge University Press: 12 October 2016
Abstract
The work described here concentrates on under-expanded, axisym-metric turbulent jets issuing into quiescent conditions. Under-expanded turbulent jets are applicable to most aircraft propulsion applications that use convergent nozzles. Experimental studies used laser doppler velocimetry (LDV) and pitot probe measurements along the jet centreline. These measurements were made for two nozzle pressure ratios (2·5 and 4·0) and at various streamwise positions up to 10 nozzle diameters downstream of the nozzle exit plane. A computational fluid dynamics (CFD) model was developed using the Fluent code and utilised the RNG K-ε two-equation turbulence model. A mesh resolution of approximately one hundredth of nozzle exit diameter was found to be sufficient to establish a mesh independent solution.
Comparison of the jet centreline axial velocity (LDV data) and pressure ratio (pitot probe data) showed good agreement with the CFD model. The correct number of shock cells had been predicted and the shock strength agreed well between the experiments and numerical model. The CFD model was, however, found to over-predict the shock cell length resulting in a longer supersonic core. There was some evidence, based on analysis of the LDV measurements that indicates the presence of swirl and jet unsteadiness, which could contribute to a shortening of the shock cell length. These effects were not modelled in the CFD. Correlation between the LDV and pitot probe measurements was generally good, however, there was some evidence that probe interference may have caused the premature decay of the jet. Overall, this work has indicated the good agreement between a CFD simulation using the RNG k-ε turbulence model and experimental data when applied to the prediction of the flowfield generated by under-expanded turbulent jets. The suitability of the LDV technique to jet flows with velocities up to 500ms-1 has also been demonstrated.
- Type
- Research Article
- Information
- Copyright
- Copyright © Royal Aeronautical Society 2004
References
- 17
- Cited by