Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-05T09:44:57.821Z Has data issue: false hasContentIssue false

Aerodynamics — retrospect and prospect

Published online by Cambridge University Press:  04 July 2016

Extract

      ‘In offering to the public the first instalment of the present work, the author desires to record his conviction that the time is near when the study of Aerial Flight will take its place as one of the foremost of the applied sciences, one of which the underlying principles furnish some of the most beautiful and fascinating problems in the whole domain of practical dynamics.’
    F. W. Lanchester — Preface to Aerodynamics (1907).

Frank Lanchester was born in 1863 and died in 1946. He lived through, and contributed significantly to, an astonishing expansion in aerodynamic knowledge and understanding. When he was a very small child, the Aeronautical Society of Great Britain was formed. Arguments about the underlying principles of aerodynamics were abundant, and manned powered flight was some 40 years into the future. When he died aerodynamics was well-established, codified and central to efficient aircraft design. Transonic flight through jet propulsion had almost been achieved.

Type
Research Article
Copyright
Copyright © Royal Aeronautical Society 1982 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Newton, I. Philosophiae Naturalis Principa Mathematica: Book II. London, 1726.Google Scholar
2. Euler, L. Principes Générauxdu MouvementdesFluides, Hist, de l'Acad. de Berlin, 1755.Google Scholar
3. Lagrange, J. L. Miscellanea Taurinensia, ii 1760. But see also the footnote on pp. 2 & 3 of Ref. 5.Google Scholar
4. Bernouilli, D. Hydrodynamica. Argentorati, 1738.Google Scholar
5. Lamb, H. Hydrodynamics, Cambridge University Press. 1st Edition 1879; 6th Edition 1932.Google Scholar
6. Navier, C. M. L. H. Memoire sur les Lois du Mouvement des Fluides: Mem de I'Acad des Sciences, vi, 389, 1822.Google Scholar
7. de ST Venant, B. Comptes Rendus, xvii, 1240, 1843.Google Scholar
8. Stokes, G. On the Theories of Internal Friction of Fluids in Motion. Camb. Trans, viii, 287. 1845.Google Scholar
9. von Karman, T. From Low-speed Aerodynamics to Astronautics, International Series of Monographs, Pergamon Press, 1963.Google Scholar
10. Reynolds, O. Phil. Trans, 174, 1883,935982.Google Scholar
11. Lord Rayi.FigH Proc. Lond. Math. Soc. 4, 1879. See also footnote on p.670 of Ref. 5..Google Scholar
12. d'Alembert, J. de R. Essai d'une nouvelle theorie de la resistance des fluides, Paris 1752.Google Scholar
13. von Helmholtz, H. Phil.Mag. Nov. 1868.Google Scholar
14. Kirchoff, G. Zur Theorie freir Flussigkeitsstrahlen. Crelle, lxx, 1869.Google Scholar
15. Lord Rayi.Figh Notes on Hydrodynamics. Phil Mag. Dec. 1876.Google Scholar
16. Robins, B. New Principles of Gunnery. London, 1742.Google Scholar
17. Lord Rayi Figh On the Irregular Flight of a Tennis Ball. Mess, of Math. vii. 1878.Google Scholar
18. von Karman, T. Lanchester's Contributions to the Theory of Flight and Operational Research, 1st Lanchester Memorial Lecture. Journal of RAeS, 62. 1958.Google Scholar
19. Kuria, W. M. Auftriebkrafte in Stromenden Flussigkeiten Illust.Aero.Mitt, 6, 133-135. 1902. Sitzb d.k. Bayr.Akad d. Wisscnschaft, 1910. NB Earlier unpublished dissertation.Google Scholar
20. Joukowski, N. E. On the adjunct Vortices (in Russian). Izvestia, 112, 1907. 1225. Uberdie KontourenderTragfliachen der Drachemflieger Zeit. Flug. v. Motorluftschiffahrt, I, 1910. 281-284.Google Scholar
21. Lanchester, F. W. Aerodynamics. (Aerial Flight: Part 1). Constable & Co, 1907.Google Scholar
22. Maxwell, C. Phil Mag, 19, 1960, 1932. Also — On the dynamical Theory of Gases Phil Trans, 49, 1866.Google Scholar
23. Pankhurst, R. C. Dimensional Analysis and Scale Factors. Inst, of Physics and Physical Society Monographs. 1964.Google Scholar
24. Robins, B. Resistance of the air and experiments relating to air resistance. Phil. Trans, 1746/7.Google Scholar
25. Huiton, C. Trans. Roy. Soc. Edin. 11. 1790. 26. R. L., Edgfworth Experiments upon the resistance of the air. Phil. Trans. 73. 1782.Google Scholar
27. Vince, S. Experiments upon the resistance of bodies moving in fluids. Phil. Trans, 88, 1798.Google Scholar
28. Robison, J. System of Mechanical Philosophy, II, Edinburgh, 1822.Google Scholar
29. Wenham, F. H. Ann. Report of Aero. Soc. of Great Britain for 1866. 1867.Google Scholar
30. Prandti, L. Tragfliigeltheorie. Gottinger Nachrichten, 451- 477. 1918.Google Scholar
31. Dines, W. H. Some experiments made to Investigate the Connection between the pressure and velocity of the Wind. Quarterly Journal Royal Met. Soc. xv. 1899. Wind Pressure upon an Inclined Surface. Proc. Roy. Soc. XLVIII, 1890.Google Scholar
32. Wenham, F. H. 6th Annual Report of the Aeronautical Society of Great Britain, 1871.Google Scholar
33. Pitot, H. Description d'une Machine pour mesurer la Vitesse des Eaux Courantes. Paris. Ace. Sciences. 1732.Google Scholar
34. Lind, , See Ref. 35 pp 9-10.Google Scholar
35. Pannel, J. R. The Measurement of Fluid Velocity and Pressure. Chapter 1. Arnold, 1924.Google Scholar
36. Darcy, H. Comptes Rendus, 38, 1854,407.Google Scholar
37. Bagley, J. Science Museum (private communication).Google Scholar
38. Gibbs-Smith, C. H. Sir George Cayley's Aeronautics: 1796- 1855. Science Museum, HMSO, 1962.Google Scholar
39. Prandtl, L. liber Fliissigkeitbewegung mit Kleiner Reibung (1904) (reprinted in Gottingen in 1927).Google Scholar
40. Blasius, H. Grenzschichten in Flussigkeiten mit kleiner Reibung (Dissertation: Leipzig 1907).Google Scholar
41. Bryan, G. H. Stability in Aviation. Macmillan (1911).Google Scholar
42. Mach, E. and Salcher, P. Photographische Fixurung der durch Projectile in der Luft eingeleiteten Vorgange: Sitz ugsb Wiener Akad. der Wiss. 95, 1887, 764780. (Also 98, 1889, 1310-1326.)Google Scholar
43. Chapman, D. R. Computational Aerodynamics Development and Outlook. AlAA Journal, 17 1979,12921313.Google Scholar
44. Dvorak, V.Uber eineneueeinfache art der Schlierenbeobachtung, Wied. Ann. d. Phy. u. Chem. 9, 1880, 502. See also D. W. Holder & R. J. North Schlieren Methods, Notes on Applied Science, 31, HMSO, 1956.Google Scholar
45. Topler, A. Beobachtungen nach einer neues optische methode. Ann. der. Phys. u. Chem. 131,1867,33.Google Scholar
46. de St. Venant, B. & Wantzel Journal de T Ecole Polyt. XVI, 92, 1839.Google Scholar
47. Reynolds, O. On the Flow of Gases. Proc. Manch. Lit. & Phil. Soc. 1885.Google Scholar
48. Hugoniot, H. Comptes Rendus, 1886.Google Scholar
49. Laplace, P. Sur la vitesse du son dans l'air et dans l'eau, Ann. de. Chim. et Phys. iii, 238,1816.Google Scholar
50. Earnshaw, S. On the Mathematical Theory of Sound. Phil. Trans, 150, 133., 1858.Google Scholar
51. Riemann, B. Uber die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite. Gott Abh, VIII, 48, 1858/9.Google Scholar
52. Rankine, W. J. M. On the Thermodynamic Theory of Waves of Finite Longitudinal Disturbance. Phil. Trans. 160,277,1870.Google Scholar
53. Huconiot, H. See Ref. 5,p486.Google Scholar
54. Lord Rayleigh, Lord Rayleigh Aerial Plane Waves of Finite Amplitude. Proc. Roy. Soc. A, 86,247, 1910.Google Scholar
55. Vieille, P. Comptes Rendus, 129, 1228, 1890.Google Scholar
56. Pankhurst, R. C. Aerodynamics at NPL, 1917-1970. Nature, 238, 1972,375380.Google Scholar
57. Lanchester, F. W. Aerodonetics. (Aerial Flight Part 2). Constable & Co, 1908.Google Scholar
58. Pritchard, J. L. The Dawn of Aerodynamics. Journal of /4eS,61,1957, 149180.Google Scholar
59. Goldstein, S. (Ed) Modern Developments in Fluid Dynamics. Vol. I & II, Oxford Univ. Press, 1938.Google Scholar
60. Relf, E. Engineering 131,428433, 1931.Google Scholar
61. Jones, B. M. The streamline aeroplane. Journal of RAeS, 33, 1929,357385.Google Scholar
62. Aerodynamic characteristics of Aerofoils. NACA Report 93, 1920.Google Scholar
63. Theodorsen, Th. Theory of Wing Sections of Arbitrary Shape. NACA Report 411, 1931.Google Scholar
64. Goldstein, S. Approximate Two-dimensional Aerofoil Theory, Pts. I-VI. ARCCP68toCP73,1942-51, published 1952.Google Scholar
65. Falkner, V. M. The solution of Lifting Plane Problems by Vortex Lattice Theory. R&M 2591, 1947.Google Scholar
66. Jones, W. P. Trends in Unsteady Aerodynamics: 6th Lanchester Memorial Lecture. Journal of RAeS. 67, 137, 1963.Google Scholar
67.(a) Lanchester, F. W. Torsional Vibrations of the Tail of an Aeroplane Pt. I. (b) Bairstow, L. & FACE, A. Oscillations of the Tail Plane and Body of an Aeroplane in flight. Pt. II. R&M 276, 1916.Google Scholar
68. Collar, A. R. Aeroelasticity — Retrospect & Prospect: 2nd Lanchester Memorial Lecture. Journal of RAeS, 63, 1958, 115.Google Scholar
69. Wagner, H. Zeit. f. Angw. Math. u. Mech. 5, 1925, 1735.Google Scholar
70. Walker, P. B. Growth of circulation about a wing on an apparatus for measuring circulation. R&M 1402, 1932.Google Scholar
71. Farren, W. S. Reaction on a wing whose angle of incidence is changing rapidly. Wind Tunnel Experiments with a Short- period Recording Balance. R&M 1648, 1935. There are earlier reference to the hysteresis in the stall in US and German publications.Google Scholar
72. Wilby, P. G. The Aerodynamic Characteristics of some new RAE Blade Sections, and their Potential Influences on Rotor Performance. Paper presented at 5th European Rotorcraft and Powered Lift Aircraft Forum, Amsterdam, 1979.Google Scholar
73. Prandtl, L. Uber Stromungen, deren Geschwindigkeiten mit der Schallgeschwindigkeit vergleichbar sind. J. Aero. Res. Inst. Tokyo Imp. Univ. 65, 1930.Google Scholar
74. Glauert, H. The effect of Compressibility on the Lift on an Aerofoil. Proc. Roy. Soc.(A), 118, 1928, 113119.Google Scholar
75. Lavender, T. The Duplex Wind Tunnel of the NPL. R&M 879,1923.Google Scholar
76. Stanton, T. E. The Development of a High Speed Wind Channel for Research in External Ballistics. Proc. Roy. Soc. (A). 131,1931,122132.Google Scholar
77. Durand, A. (Ed) Aerodynamic Theory. Springer, Berlin, 1934.Google Scholar
78. Ackeret, J. Windkanale fur hohe Geschwindigkeiten. 5th Convention of Volta Congress, 1935.Google Scholar
79. Collyer, M. R. Lock, R. C. Prediction ofViscous Effects in Steady Transonic Flow past an Aerofoil. Aero. Quarterly, 1979, 385502.Google Scholar
80. Ackeret, J. Luftkrafte auf Fliigel die mit grosserer als Schallgeschwindigkeit bewegt werden Zs F. Math. 16,1925,72.Google Scholar
81. Taylor, G. I. Applications to Aeronautics of Ackeret's Theory of Aerofoils moving at Speeds greater than that of Sound. R&M 1467,1932.Google Scholar
82. Stanton, T. E. A high-speed Wind Channel for Tests on Aerofoils. R&M 1130,1928.Google Scholar
83. Busemann, A. Handbuch der Experimental-physik, 4, 407, WeinHarmel931.Google Scholar
84. Furber, S. B. & Fowkes-Williams, V. E. Is the Weis-Fogh Principle exploitable in Turbo-machinery? App. Mech. 94, 1979,519540.Google Scholar
85. von Karman, T. & Moore, N. B. Resistance of Slender Bodies moving with Supersonic Velocities with Special Reference to Projectiles. Trans ASME, 54,1932,303310.Google Scholar
86. Pankhurst, R. C. & Holder, D. W. Wind tunnel Technique. Pitman, 1952. (See Chapter 8).Google Scholar
87. Betz, A. Ein Verfahren zur direkten Ermittlung des Profilwiderstandes. Zeitf. Flug. u. Motor 16,1925,42.Google Scholar
88. Jones, B. M. Measurement of Profile Drag by the Pitot Traverse. Method R&M 1688,1936.Google Scholar
89. Ower, E. The Measurement of Air Flow. Chapman & Hall, 1933.Google Scholar
90. Rogers, E. W. E. & Hall, J. M: An introduction to the Flow about Plane Swept-back Wings at Transonic Speeds. Journal of RAeS, 64,1960,449464.Google Scholar
91. Wright, R. H. & V. G., Ward NACA Transonic Wind Tunnel Sections. NACA RM L8J06,1948.Google Scholar
92. Goethert, B. M. Transonic Wind Tunnel Testing. AGARDOgraph 49, 1961.Google Scholar
93. Alfven, H. On the Existence of Electromagnetic Hydrodynamic Waves. Arkiv. F. Math. Astro. Ock Fysik, 296, 1943,17.Google Scholar
94. Fiddes, S. P. Unpublished communications (RAE) (1980).Google Scholar
95. Zacharov, S. B. The calculation of inviscid separated flow about a Slender Cone for Large Angles of Attack. Ucheme Zapiski TsAGI VII, 6,1976.Google Scholar
96. Phillips, H. Mechanical Flight and Matters relating thereto. Engineering. London, 1900.Google Scholar
97. Black, J. Ernst Mach. Pioneer of Supersonics. Journal of RAeS, 54,1950,371377.Google Scholar
98. Convegno di Scienze, Fisiche, Matematiche e Naturalli 30 Set.- 6 Ott, 1935. Roma Accad. DTtalia, 1936.Google Scholar
99. Jennings, W. G. Terry, A. & Pearsall, P. J. Preliminary Calibration of the 24ft Wind Tunnel of the RAE with a Short Description of the Tunnel. R&M 1729, 1936.Google Scholar
100. Rainbird, W. J. The External Flow field about Yawed Circular Cones. AGARD-CP-30, 1968.Google Scholar
101. Hcerner, S. F. Aerodynamic Drag. Published by the Author, 1958.Google Scholar
102. Grant, J. The Prediction of Supercritical Pressure Distributions on Blade Tips of Arbitrary Shape over a Range of Advancing Blade Azimuth Angles. Vertica, 3, 1979,275292.Google Scholar
103. Brotherhood, P. & Young, C. The Measurement and Interpretation of Rotor Blade Pressures and Loads on Puma Helicopter in Flight. Paper presented at 5th European Rotorcraft and Powered Lift Aircraft Forum, Amsterdam, 1979.Google Scholar