Published online by Cambridge University Press: 04 July 2016
An analysis of paraglider performance has revealed that wing section drag is the most significant contribution to overall drag. Wind tunnel measurements performed on two-dimensional hollow models indicate that intake drag is less significant than previously thought. An experimental investigation into the characteristics of a ‘quasi ’ -two-dimensional flexible model consisting of solid ribs covered with a fabric skin was performed at realistic Reynolds numbers. The main cause of performance deterioration was found to be a significant reduction in section lift coefficient when compared to a similar solid wing section. This is believed to be mainly due to two factors: a large trailing edge separation and the deformation of the wing between ribs. The deformation was measured and it was shown that the deformed shape is less capable of generating high lift coefficients than the design section. It is thought that the extent of the trailing edge separation is increased due to the presence of streamwise grooves caused by the shape deformation of the wing. The shape of the separated region was found to be strongly three-dimensional with the separation point being about half a chord-length further upstream along the ribs. A small separation bubble was also observed immediately behind the lip of the intake, due to the fabric ‘flaring’ open. Based on the observations presented a number of suggestions for improved wings have been made.