Published online by Cambridge University Press: 04 July 2016
Wind tunnel data from a tanker wing and receiver aircraft model at varying vertical separation have been compared with theoretical results. In the aerodynamic model the tanker wing is represented by a horseshoe vortex while the aerodynamic loads on the receiver are determined by the vortex lattice method and lifting-line theory, although an approximate method is used to determine the side force on the fin. In the longitudinal case data were obtained for low, mid and high tailplane positions and, with the exception of the pitching moment results, fairly good agreement is obtained between theory and experiment. The relatively small differences are due mainly to the wind tunnel boundary interference effect which could not be quantified for the pitching moment measurements. The lateral aerodynamic interference was determined by banking the tanker wing and displacing it sideways and by yawing the receiver model. Fairly good agreement is obtained between the theory and experiment for the most significant terms which are the rolling moments due to bank and sideways displacement. The effect of the sidewash due to the tanker wake on the receiver in yaw is found to be relatively insignificant. Over the range of bank, yaw and sideways displacements tested the results are almost linear.