Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-06T12:06:17.283Z Has data issue: false hasContentIssue false

Three-dimensional fibre optimisation with computer aided internal optimisation

Published online by Cambridge University Press:  04 July 2016

D. Reuschel
Affiliation:
Forschungszentrum Karlsruhe, Institut für Materialforschung IIKarlsruhe, Germany
C. Mattheck
Affiliation:
Forschungszentrum Karlsruhe, Institut für Materialforschung IIKarlsruhe, Germany

Abstract

Big efforts have been made to optimise the behaviour and the properties of fibre reinforced materials. The fibre-matrix bonding, the influence of the fibre-matrix content and many other relations of several systems have been intensively investigated. Nevertheless, the arrangement of the fibres within a structure was a neglected subject of research.

CAIO (computer aided internal optimisation) was developed to predict the optimal arrangement of fibres for given load and boundary conditions. The mechanism of the method has been adapted from biological structures. CAIO is based on the finite elements method (FEM). In a first step the force flow of a structure is calculated by using FEM. The CAIO routine changes orientation of orthotropic axes into the directions of force flow with respect to the FE-results. A following stress analysis leads to a reduced shear stress distribution. The optimum fibre arrangement is calculated by an automatically iterative process of alternating FE-run and CAIO calculation. The latest version of CAIO allows the calculation of the optimum fibre arrangement in three-dimensional shell structures as well as in three-dimensional volume structures.

Type
Research Article
Copyright
Copyright © Royal Aeronautical Society 1999 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Mattheck, C. Design in Nature — learning from trees, Springer Verlag, Berlin, 1998.Google Scholar
2. Mattheck, C. Design in der Natur — der Baum als Lehrmeister. Rombach Verlag, Freiburg, 3rd edition, 1997.Google Scholar
3. Mattheck, C. and Kubler, H. Wood — The Internal Optimization of Trees. Springer Verlag, Berlin, 1997.Google Scholar
4. Kriechbaum, R. Ein Verfahren zur Optimierung der Faserverldufe in Verbundwerkstoffen durch Minimierung der Schubspannungen nach dem Vorbild der Natur. Dissertation for the Fakultat fiir Maschinenbau der Universitat Karlsruhe, 1995.Google Scholar
5. Reuschel, D., Mattheck, C. and Teschner, M. Determination of optimal fibre arrangement of complex two or three dimensional geometries. Computer aided optimum design of structures V, Proceedings of OPTI ’ 97, Rome, September 1997.Google Scholar
6. Puck, A. Festigkeitsanalyse von Faser-Matrix-Laminaten, Carl Hanser- Verlag, Miinchen, 1996.Google Scholar
7. Reuschel, D. and Mattheck, C., Die Mechanik des Harfenbaumes. Tagungsband 4. VTA-Spezialseminar Messen und beurteilen am Baum, Karlsruhe, 1998.Google Scholar
8. Jones, S.E. and Platts, M.J. Using internal fibre geometry to improve performance on pin-loaded holes in composite materials, App composite materials 3, 1996, pp 117134.Google Scholar
9. Maekawa, Z., Hamada, H. Yokoyama, A., and Ueda, S. Tensile behaviour of braided flat bar with a circular hole. Society for composite materials, Tokyo, 1988.Google Scholar
10. Cooper, A.A.G. Trajectorial fiber feinforcement of composite structures. Dissertation at the Washington University, St Louis, Missouri, USA, 1972.Google Scholar
11. Hyer, M.W. and Charette, R.F. Use of Curvilinear fibre format in composite structure design. AIAA J, 1991,29, (6), pp 10111015.Google Scholar
12. Gliesche, K. and Feltin, D. Beanspruchungsgerechte Textilkonstruktionen fiir composite-Bauteile, Technische Texdlien, 1995, 38, pp 209211.Google Scholar