Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-22T04:09:02.463Z Has data issue: false hasContentIssue false

Review of microwave techniques used in the manufacture and fault detection of aircraft composites

Published online by Cambridge University Press:  07 October 2020

Abstract

Microwaves are a form of electromagnetic radiation commonly used for telecommunications, navigation and food processing. More recently microwave technologies have found applications in fibre-reinforced polymer composites, which are increasingly used in aircraft structures. Microwave energy can be applied with low power (up to milliwatts) for non-destructive testing and high power (up to kilowatts) for heating/curing purposes. The state-of-the-art applications at high power include curing, three-dimensional (3D) printing, joining and recycling, whereas low-power microwave techniques can provide quality checks, strain sensing and damage inspection. Low-power microwave testing has the advantage of being non-contact, there is no need for surface transducers or couplants, it is operator friendly and relatively inexpensive; high-power microwave energy can offer volumetric heating, reduced processing time and energy saving with no ionising hazards. In this paper the recent research progress is reviewed, identifying achievements and challenges. First, the critical electromagnetic properties of composites that are closely related to the heating and sensing performance are discussed. Then, representative case studies are presented. Finally, the trends are outlined, including intelligent/automated inspection and solid-state heating.

Type
Survey Paper
Copyright
© The Author(s), 2020. Published by Cambridge University Press on behalf of Royal Aeronautical Society.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Soutis, C. Fibre reinforced composites in aircraft construction, Prog. Aerosp. Sci., 2005, 41, pp 143151. doi: 10.1016/j.paerosci.2005.02.004CrossRefGoogle Scholar
Chandarana, N., Sanchez, D., Soutis, C. and Gresil, M. Early damage detection in composites during fabrication and mechanical testing, Materials (Basel), 2017, 10, p 685. doi: 10.3390/ma10070685CrossRefGoogle ScholarPubMed
Saeedifar, M., Saleh, M.N., El-Dessouky, H.M., Teixeira De Freitas, S. and Zarouchas, D. Damage assessment of NCF, 2D and 3D woven composites under compression after multiple-impact using acoustic emission, Compos. Part. A. Appl. Sci. Manuf., 2020, 132, p 105833. doi: 10.1016/j.compositesa.2020.105833CrossRefGoogle Scholar
Xu, J., Wang, W., Han, Q. and Liu, X. Damage pattern recognition and damage evolution analysis of unidirectional CFRP tendons under tensile loading using acoustic emission technology, Compos. Struct., 2020, 238, p 111948. doi: 10.1016/j.compstruct.2020.111948CrossRefGoogle Scholar
Qi, X.F., Yang, Y., Kang, W.P., Wang, Q. and Zhao, G. Acoustic emission-based real-time monitoring of fatigue damage evolution of T800 carbon fiber/bismaleimide composites, IOP Conf. Ser. Mater. Sci. Eng., 2020, 770, p 012087. doi: 10.1088/1757-899X/770/1/012087CrossRefGoogle Scholar
James, R., Joseph, R. and Giurgiutiu, V. Impact damage detection in composite plates using acoustic emission signal signature identification. Han, J.-H., Shahab, S., and Wang, G. (eds.) Active and Passive Smart Structures and Integrated Systems IX, 2020, pp 119.CrossRefGoogle Scholar
Khamedi, R., Abdi, S., Ghorbani, A., Ghiami, A. and Erden, S. Damage characterization of carbon/epoxy composites using acoustic emission signals wavelet analysis, Compos. Interfaces, 2020, 27, pp 111124. doi: 10.1080/09276440.2019.1601939.CrossRefGoogle Scholar
Bache, M.R. Advanced experimental techniques for monitoring the initiation and progression of damage in ceramic matrix composites, The 16th European Inter-Regional Conference of Ceramics CIEC 2016, 2018, pp 6–14.Google Scholar
Kessler, S.S., Spearing, S.M. and Soutis, C. Damage detection in composite materials using Lamb wave methods, Smart. Mater. Struct., 2002, 11, pp 269278. doi: 10.1088/0964-1726/11/2/310CrossRefGoogle Scholar
Yelve, N.P., Mitra, M. and Mujumdar, P.M.M. Detection of delamination in composite laminates using Lamb wave based nonlinear method, Compos. Struct., 2017, 159, pp 257266. doi: 10.1016/j.compstruct.2016.09.073CrossRefGoogle Scholar
Xiao, X., Gao, B., Tian, G. and Wang, K. Fusion model of inductive thermography and ultrasound for nondestructive testing, Infrared. Phys. Technol., 2019, 101, pp 162170. doi: 10.1016/j.infrared.2019.06.016CrossRefGoogle Scholar
Wang, B., Ming, Y., Zhu, Y., Yao, X., Ziegmann, G., Xiao, H., Zhang, X., Zhang, J., Duan, Y. and Sun, J. Fabrication of continuous carbon fiber mesh for lightning protection of large-scale wind-turbine blade by electron beam cured printing, Addit. Manuf., 2019, p 100967. doi: 10.1016/j.addma.2019.100967CrossRefGoogle Scholar
Maio, L., Hervin, F. and Fromme, P. Guided wave scattering analysis around a circular delamination in a quasi-isotropic fiber-composite laminate, Fromme, P. and Su, Z. (eds.) Health Monitoring of Structural and Biological Systems IX, SPIE, 2020, p 29.CrossRefGoogle Scholar
Tai, S., Kotobuki, F., Wang, L. and Mal, A. Modeling ultrasonic elastic waves in fiber-metal laminate structures in presence of sources and defects, J. Nondestruct. Eval. Diagnostics. Progn. Eng. Syst., 2020, 3. doi: 10.1115/1.4046946CrossRefGoogle Scholar
Munian, R.K., Roy Mahapatra, D. and Gopalakrishnan, S. Ultrasonic guided wave scattering due to delamination in curved composite structures, Compos. Struct., 2020, 239, p 111987. doi: 10.1016/j.compstruct.2020.111987CrossRefGoogle Scholar
Mei, H., James, R., Haider, M.F. and Giurgiutiu, V. Multimode guided wave detection for various composite damage types, Appl. Sci., 2020, 10, p 484. doi: 10.3390/app10020484.CrossRefGoogle Scholar
Xiao, W., Howden, S. and Yu, L. Composite bond quality nondestructive evaluation with noncontact Lamb wave system, Shull, P.J., Yu, T.-Y, Gyekenyesi, A.L., and Wu, H.F. (eds.) Nondestructive Characterization and Monitoring of Advanced Materials, Aerospace, Civil Infrastructure, and Transportation IX, SPIE, 2020, p 63.CrossRefGoogle Scholar
Khan, A., Shin, J.K., Lim, W.C., Kim, N.Y. and Kim, H.S. A deep learning framework for vibration-based assessment of delamination in smart composite laminates, Sensors, 2020, 20, p 2335. doi: 10.3390/s20082335CrossRefGoogle ScholarPubMed
Qing, X., Li, W., Wang, Y. and Sun, H. Piezoelectric transducer-based structural health monitoring for aircraft applications, Sensors, 2019, 19, p 545. doi: 10.3390/s19030545CrossRefGoogle ScholarPubMed
Mei, H., Haider, M., Joseph, R., Migot, A. and Giurgiutiu, V. Recent advances in piezoelectric wafer active sensors for structural health monitoring applications, Sensors, 2019, 19, p 383. doi: 10.3390/s19020383CrossRefGoogle ScholarPubMed
Mei, H., Haider, M.F., James, R. and Giurgiutiu, V. Pure S0 and SH0 detections of various damage types in aerospace composites, Compos. Part. B. Eng., 2020, 189, p 107906. doi: 10.1016/j.compositesb.2020.107906CrossRefGoogle Scholar
Wang, K., Liu, M., Cao, W., Yang, W., Su, Z. and Cui, F. Detection and sizing of disbond in multilayer bonded structure using modally selective guided wave, Struct. Heal. Monit., 2019, p 147592171986627. doi: 10.1177/1475921719866274CrossRefGoogle Scholar
Derusova, D.A., Vavilov, V.P., Druzhinin, N.V., Kolomeets, N.P., Chulkov, A.O., Rubtsov, V.E. and Kolubaev, E.A. Investigating vibration characteristics of magnetostrictive transducers for air-coupled ultrasonic NDT of composites, NDT. E. Int., 2019, 107, p 102151. doi: 10.1016/j.ndteint.2019.102151CrossRefGoogle Scholar
Neuenschwander, J., Furrer, R. and Roemmeler, A. Application of air-coupled ultrasonics for the characterization of polymer and polymer-matrix composite samples, Polym. Test., 2016, 56, pp 379386. doi: 10.1016/j.polymertesting.2016.11.002CrossRefGoogle Scholar
Quattrocchi, A., Freni, F. and Montanini, R. Air-coupled ultrasonic testing to estimate internal defects in composite panels used for boats and luxury yachts, Int. J. Interact. Des. Manuf., 2020, 14, pp 3541. doi: 10.1007/s12008-019-00611-5CrossRefGoogle Scholar
Xiao, W. and Yu, L. Nondestructive evaluation of nuclear spent fuel dry cask structures using non-contact ACT-SLDV Lamb wave method, Farhangdoust, S. and Meyendorf, N.G. (eds.) Smart Structures and NDE for Industry 4.0, Smart Cities, and Energy Systems SPIE, 2020, p 14.CrossRefGoogle Scholar
RÖmmeler, A., Zolliker, P., Neuenschwander, J., Van Gemmeren, V., Weder, M. and Dual, J. Air coupled ultrasonic inspection with Lamb waves in plates showing mode conversion, Ultrasonics, 2020, 100, p 105984. doi: 10.1016/j.ultras.2019.105984CrossRefGoogle ScholarPubMed
Capriotti, M. and Lanza Di Scalea, F. Robust non-destructive inspection of composite aerospace structures by extraction of ultrasonic guided-wave transfer function in single-input dual-output scanning systems, J. Intell. Mater. Syst. Struct., 2020, 31, pp 651664. doi: 10.1177/1045389X19898266CrossRefGoogle Scholar
Xiao, W. and Yu, L. Nondestructive evaluation with fully non-contact air-coupled transducer-scanning laser Doppler vibrometer Lamb wave system. In: Gyekenyesi, A.L. (ed.) Nondestructive Characterization and Monitoring of Advanced Materials, Aerospace, Civil Infrastructure, and Transportation XIII, SPIE, 2019, p 50.CrossRefGoogle Scholar
Kazys, R.J. and Vilpisauskas, A. Air-coupled reception of a slow ultrasonic a0 mode wave propagating in thin plastic film, Sensors, 2020, 20, p 516. doi: 10.3390/s20020516CrossRefGoogle ScholarPubMed
Boccardi, S., Carlomagno, G.M., Boffa, N.D., Ricci, F. and Meola, C. Infrared thermography to locate impact damage in thin and thicker carbon/epoxy panels, Polym. Eng. Sci., 2017, 57, pp 657664. doi: 10.1002/pen.24571CrossRefGoogle Scholar
Bang, H.-T., Park, S. and Jeon, H. Defect identification in composite materials via thermography and deep learning techniques, Compos. Struct., 2020, 246, p 112405. doi: 10.1016/j.compstruct.2020.112405CrossRefGoogle Scholar
Xu, C., Zhang, W., Wu, C., Xie, J., Yin, X. and Chen, G. An improved method of eddy current pulsed thermography to detect subsurface defects in glass fiber reinforced polymer composites, Compos. Struct., 2020, 242, p 112145. doi: 10.1016/j.compstruct.2020.112145CrossRefGoogle Scholar
Ward, C. and Burleigh, D. Pulse thermography applications in aerospace composites manufacturing processes, Oswald-Tranta, B. and Zalameda, J.N. (eds.) Thermosense: Thermal Infrared Applications XLII, SPIE, 2020, p 20.CrossRefGoogle Scholar
Yadav, N., Oswald-Tranta, B., Schledjewski, R. and Habicher, M. Online thermography inspection for automated tape layup, Oswald-Tranta, B. and Zalameda, J.N. (eds.) Thermosense: Thermal Infrared Applications XLII, SPIE, 2020, p 16.CrossRefGoogle Scholar
Chandarana, N., Lansiaux, H. and Gresil, M. Characterisation of damaged tubular composites by acoustic emission, thermal diffusivity mapping and TSR-RGB projection technique, Appl. Compos. Mater., 2017, 24, pp 525551. doi: 10.1007/s10443-016-9538-8CrossRefGoogle Scholar
SÁnchez, D.M., Gresil, M. and Soutis, C. Distributed internal strain measurement during composite manufacturing using optical fibre sensors, Compos. Sci. Technol., 2015, 120, pp 4957. doi: 10.1016/j.compscitech.2015.09.023CrossRefGoogle Scholar
Tsai, J.-T., Dustin, J.S. and Mansson, J.-A. Cure strain monitoring in composite laminates with distributed optical sensor, Compos. Part. A. Appl. Sci. Manuf., 2019, 125, p 105503. doi: 10.1016/j.compositesa.2019.105503CrossRefGoogle Scholar
Mitra, N., Patra, A.K., Singh, S.P., Mondal, S., Datta, P.K. and Varshney, S.K. Interfacial delamination in glass-fiber/polymer-foam-core sandwich composites using singlemode–multimode–singlemode optical fiber sensors: Identification based on experimental investigation, J. Sandw. Struct. Mater., 2020, 22, pp 4054. doi: 10.1177/1099636217733983CrossRefGoogle Scholar
Tsukada, T., Minakuchi, S. and Takeda, N. Assessing residual stress redistribution during annealing in thick thermoplastic composites using optical fiber sensors, J. Thermoplast. Compos. Mater., 2020, 33, pp 5368. doi: 10.1177/0892705718804580CrossRefGoogle Scholar
Munzke, D., Duffner, E., Eisermann, R., Schukar, M., Schoppa, A., Szczepaniak, M., StrohhÄcker, J. and Mair, G. Monitoring of type IV composite pressure vessels with multilayer fully integrated optical fiber based distributed strain sensing, Mater. Today Proc., 2020. doi: 10.1016/j.matpr.2020.02.872CrossRefGoogle Scholar
Serovaev, G. and Kosheleva, N. The study of internal structure of woven glass and carbon fiber reinforced composite materials with embedded fiber-optic sensors, Frat. ed. Integrità. Strutt., 2019, 14, pp 225235. doi: 10.3221/IGF-ESIS.51.18CrossRefGoogle Scholar
Saleh, M.N., Yudhanto, A., Potluri, P., Lubineau, G. and Soutis, C. Characterising the loading direction sensitivity of 3D woven composites: effect of z-binder architecture, Compos. Part. A. Appl. Sci. Manuf., 2016, 90, pp 577588. doi: 10.1016/j.compositesa.2016.08.028CrossRefGoogle Scholar
Roy, S.S., Potluri, P. and Soutis, C. Tensile response of hoop reinforced multiaxially braided thin wall composite tubes, Appl. Compos. Mater., 2017, 24, pp 397416. doi: 10.1007/s10443-016-9570-8CrossRefGoogle Scholar
Han, W., Hu, K., Shi, Q. and Zhu, F. Damage evolution analysis of open-hole tensile laminated composites using a progress damage model verified by AE and DIC, Compos. Struct., 2020, 247, p 112452. doi: 10.1016/j.compstruct.2020.112452CrossRefGoogle Scholar
Gao, F., Hua, J., Zeng, L. and Lin, J. Amplitude modified sparse imaging for damage detection in quasi-isotropic composite laminates using non-contact laser induced Lamb waves, Ultrasonics, 2019, 93, pp 122129. doi: 10.1016/j.ultras.2018.10.008CrossRefGoogle ScholarPubMed
Szebenyi, G., Hliva, V. and Tamas-Benyei, P. Investigation of delaminated composites by DIC and AE methods, The 22nd International Conference on Composites Materials (ICCM22), Melbourne, 2019, pp 4699–4705.Google Scholar
Oz, F.E., Mehdikhani, M., Ersoy, N. and Lomov, S. In-situ imaging of inter- and intra-laminar damage in open-hole tension tests of carbon fibre-reinforced composites, Compos. Struct., 2020, 244, p 112302. doi: 10.1016/j.compstruct.2020.112302CrossRefGoogle Scholar
Li, Z., Haigh, A.D., Saleh, M.N., Mccarthy, E.D., Soutis, C., Gibson, A.A.P. and Sloan, R. Detection of impact damage in carbon fiber composites using an electromagnetic sensor, Res. Nondestruct. Eval., 2018, 29, pp 123142. doi: 10.1080/09349847.2016.1263772CrossRefGoogle Scholar
Li, Z., Haigh, A., Soutis, C., Gibson, A., Sloan, R. and Karimian, N. Detection and evaluation of damage in aircraft composites using electromagnetically coupled inductors, Compos. Struct., 2016, 140, pp 252261. doi: 10.1016/j.compstruct.2015.12.054CrossRefGoogle Scholar
Salski, B., Gwarek, W. and Korpas, P. Electromagnetic inspection of carbon-fiber-reinforced polymer composites with coupled spiral inductors, IEEE Trans. Microw. Theory Tech., 2014, 62, pp 15351544. doi: 10.1109/TMTT.2014.2325537CrossRefGoogle Scholar
Heuer, H., Schulze, M., Pooch, M., GÄbler, S., Nocke, A., Bardl, G., Cherif, C., Klein, M., Kupke, R., Vetter, R., Lenz, F., Kliem, M., BÜlow, C., Goyvaerts, J., Mayer, T. and Petrenz, S. Review on quality assurance along the CFRP value chain – Non-destructive testing of fabrics, preforms and CFRP by HF radio wave techniques, Compos. Part. B Eng., 2015, 77, pp 494501. doi: 10.1016/j.compositesb.2015.03.022Google Scholar
Mook, G., Lange, R. and Koeser, O. Non-destructive characterisation of carbon-fibre-reinforced plastics by means of eddy-currents, Compos. Sci. Technol., 2001, 61, pp 865873. doi: 10.1016/S0266-3538(00)00164-0CrossRefGoogle Scholar
Yin, W., Withers, P.J., Sharma, U. and Peyton, A.J. Noncontact characterization of carbon-fiber-reinforced plastics using multifrequency eddy current sensors, IEEE Trans. Instrum. Meas., 2009, 58, pp 738743. doi: 10.1109/TIM.2008.2005072Google Scholar
Zeng, Z., Wang, J., Liu, X., Lin, J. and Dai, Y. Detection of fiber waviness in CFRP using eddy current method, Compos. Struct., 2019, 229, p 111411. doi: 10.1016/j.compstruct.2019.111411CrossRefGoogle Scholar
Wu, D., Cheng, F., Yang, F. and Huang, C. Non-destructive testing for carbon-fiber-reinforced plastic (CFRP) using a novel eddy current probe, Compos. Part B Eng., 2019, 177, p 107460. doi: 10.1016/j.compositesb.2019.107460CrossRefGoogle Scholar
James, R., Faisal Haider, M., Giurgiutiu, V. and Lilienthal, D. A simulative and experimental approach towards eddy current non-destructive evaluation of manufacturing flaws and operational damage in CFRP composites, Gyekenyesi, A.L. (ed.) Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems, SPIE, 2019, pp 114.Google Scholar
GÄbler, S., Heuer, H. and Heinrich, G. Measuring and imaging permittivity of insulators using high-frequency eddy-current devices, IEEE Trans. Instrum. Meas., 2015, 64, pp 22272238. doi: 10.1109/TIM.2015.2390851CrossRefGoogle Scholar
Wang, Y., Burnett, T.L., Chai, Y., Soutis, C. and Hogg, P.J., Withers, P.J. X-ray computed tomography study of kink bands in unidirectional composites, Compos. Struct., 2017, 160, pp 917924. doi: 10.1016/j.compstruct.2016.10.124CrossRefGoogle Scholar
Emerson, M.J., Wang, Y., Withers, P.J., Conradsen, K., Dahl, A.B. and Dahl, V.A. Quantifying fibre reorientation during axial compression of a composite through time-lapse X-ray imaging and individual fibre tracking, Compos. Sci. Technol., 2018, 168, pp 4754. doi: 10.1016/j.compscitech.2018.08.028CrossRefGoogle Scholar
Metaxas, A.C. and Meredith, R.J. Industrial microwave heating. Peter Peregrinus, 1993.Google Scholar
Wilson, W.C., Moore, J.P. and Juarez, P.D. Carbon fiber tow angle determination using microwave reflectometry, 2016 IEEE Sensors, 2016, pp 13.CrossRefGoogle Scholar
Greenawald, E.C. Microwave NDE of impact damaged fiberglass and elastomer layered composites. AIP Conference Proceedings, 2000, pp 12631268.CrossRefGoogle Scholar
Yang, S.H., Kim, K.B., Oh, H.G. and Kang, J.S. Non-contact detection of impact damage in CFRP composites using millimeter-wave reflection and considering carbon fiber direction, NDT. E. Int., 2013, 57, pp 4551. doi: 10.1016/j.ndteint.2013.03.006CrossRefGoogle Scholar
Li, Z., Wang, T., Haigh, A., Meng, Z. and Wang, P. Non-contact detection of impact damage in carbon fibre composites using a complementary split-ring resonator sensor, J. Electr. Eng., 2019, 70, pp 489493. doi: 10.2478/jee-2019-0083Google Scholar
Hosoi, A. and Ju, Y. Nondestructive detection of defects in GFRP laminates by microwaves, J. Solid. Mech. Mater. Eng., 2010, 4, pp 17111721. doi: 10.1299/jmmp.4.1711CrossRefGoogle Scholar
Li, Z., Haigh, A., Soutis, C., Gibson, A. and Sloan, R. Microwaves sensor for wind turbine blade inspection, Appl. Compos. Mater., 2017, 24, pp 495512. doi: 10.1007/s10443-016-9545-9CrossRefGoogle Scholar
Case, J.T., Kharkovsky, S., Zoughi, R., Steffes, G. and Hepburn, F.L. Millimeter wave holographical inspection of honeycomb composites. AIP Conference Proceedings, 2008, pp 970975.CrossRefGoogle Scholar
Umeda, T., Miyashita, T. and Kako, Y. New evaluation method of dielectric materials using a microwave technique, IEEE Trans. Electr. Insul., 1980, EI-15, pp 340349. doi: 10.1109/TEI.1980.298261CrossRefGoogle Scholar
Todoroki, A., Ohara, K., Mizutani, Y., Suzuki, Y. and Matsuzaki, R. Lightning strike damage detection at a fastener using self-sensing TDR of composite plate, Compos. Struct., 2015, 132, pp 11051112. doi: 10.1016/j.compstruct.2015.07.028CrossRefGoogle Scholar
Rufail, L., Laurin, J.-J. and Moupfouma, F. Composite aircraft lightning strike protection damage evaluation using microwave microscopy techniques, 2017 11th European Conference on Antennas and Propagation, 2017, vol. 69, pp 689692. doi: 10.23919/EuCAP.2017.7928331CrossRefGoogle Scholar
Ravuri, M., Abou-Khousa, M., Kharkovsky, S., Zoughi, R., Austin, R., Thompson, D.O. and Chimenti, D.E. Microwave and millimeter wave near-field methods for evaluation of radome composites, AIP Conference Proceedings, 2008, pp 976981.CrossRefGoogle Scholar
Wang, P., Pei, Y. and Zhou, L. Near-field microwave identification and quantitative evaluation of liquid ingress in honeycomb sandwich structures, NDT. E. Int., 2016, 83, pp 3237. doi: 10.1016/j.ndteint.2016.06.002CrossRefGoogle Scholar
Ibrahim, M.E. Nondestructive evaluation of thick-section composites and sandwich structures: a review, Compos. Part A Appl. Sci. Manuf., 2014, 64, pp 3648. doi: 10.1016/j.compositesa.2014.04.010CrossRefGoogle Scholar
Liu, C., Barker, S., Fan, L., Ghasr, M.T.A., Chen, G. and Zoughi, R. Microwave high-resolution 3D SAR imaging of corroded reinforcing steel bars in mortar subjected to accelerated electrochemical corrosion, INSPIRE-UTC 2019 Annual Meeting, St. Louis, 2019, pp 1–6.Google Scholar
Narayanan, R.M. and James, R. Microwave nondestructive testing of galvanic corrosion and impact damage in carbon fiber reinforced polymer composites, Int. J. Microwaves. Appl., 2018, 7, pp 115.CrossRefGoogle Scholar
Pakkathillam, J.K., Sivaprakasam, B.T., Krishnamurthy, C. and Arunachalam, K. Enhanced sensitivity of microwave inspection of thin composites at resonance, 2019 URSI Asia-Pacific Radio Science Conference (AP-RASC), IEEE, 2019, pp 13.CrossRefGoogle Scholar
Careaga, A. Missouri S&T research team helps Boeing set up nondestructive evaluation laboratory, http://news.mst.edu/2017/02/missouri-st-research-team-helps-boeing-set-up-nondestructive-evaluation-laboratory/Google Scholar
Methven, J.M., Ghaffariyan, S.R. and Abidin, A.Z. Manufacture of fiber-reinforced composites by microwave assisted pultrusion, Polym. Compos., 2000, 21, pp 586594. doi: 10.1002/pc.10214CrossRefGoogle Scholar
Li, Y., Li, N., Zhou, J. and Cheng, Q. Microwave curing of multidirectional carbon fiber reinforced polymer composites, Compos. Struct., 2019, 212, pp 8393. doi: 10.1016/j.compstruct.2019.01.027CrossRefGoogle Scholar
Li, Y., Li, N. and Gao, J. Tooling design and microwave curing technologies for the manufacturing of fiber-reinforced polymer composites in aerospace applications, Int. J. Adv. Manuf. Technol., 2014, 70, pp 591606. doi: 10.1007/s00170-013-5268-3CrossRefGoogle Scholar
Green, J.E., Nuhiji, B., Zivtins, K., Bower, M.P., Grainger, R., Day, R.J. and Scaife, R.J. Internal model control of a domestic microwave for carbon composite curing, IEEE Trans. Microw. Theory. Tech., 2017, 65, pp 43354346. doi: 10.1109/TMTT.2017.2693145CrossRefGoogle Scholar
Nuhiji, B., Swait, T., Bower, M.P., Green, J.E., Day, R.J. and Scaife, R.J. Tooling materials compatible with carbon fibre composites in a microwave environment, Compos. Part B Eng., 2019, 163, pp 769778. doi: 10.1016/j.compositesb.2019.01.047CrossRefGoogle Scholar
Boey, F., Gosling, I. and Lye, S.W. High-pressure microwave curing process for an epoxy-matrix/glass-fibre composite, J. Mater. Process. Technol., 1992, 29, pp 311319. doi: 10.1016/0924-0136(92)90445-XCrossRefGoogle Scholar
Li, N., Link, G. and Jelonnek, J. 3D microwave printing temperature control of continuous carbon fiber reinforced composites, Compos. Sci. Technol., 2020, 187, p 107939. doi: 10.1016/j.compscitech.2019.107939CrossRefGoogle Scholar
Bajpai, P.K., Singh, I. and Madaan, J. Joining of natural fiber reinforced composites using microwave energy: Experimental and finite element study, Mater. Des., 2012, 35, pp 596602. doi: 10.1016/j.matdes.2011.10.007CrossRefGoogle Scholar
Ku, H., Siu, F., Siores, E., Ball, J.A. and Blicblau, A. Applications of fixed and variable frequency microwave (VFM) facilities in polymeric materials processing and joining, J. Mater. Process. Technol., 2001, 113, pp 184188. doi: 10.1016/S0924-0136(01)00642-2CrossRefGoogle Scholar
Varadan, V.V.K. and Varadan, V.V.K. Microwave joining and repair of composite materials, Polym. Eng. Sci., 1991, 31, pp 470486. doi: 10.1002/pen.760310703CrossRefGoogle Scholar
Sosa, E.D., Worthy, E.S. and Darlington, T.K. Microwave assisted manufacturing and repair of carbon reinforced nanocomposites, J. Compos., 2016, 2016, pp 19. doi: 10.1155/2016/7058649CrossRefGoogle Scholar
Feher, L.E. Energy efficient microwave systems. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.Google Scholar
Madi, E., Pope, K., Huang, W. and Iqbal, T. A review of integrating ice detection and mitigation for wind turbine blades, Renew. Sustain. Energy. Rev., 2019, 103, pp 269281. doi: 10.1016/j.rser.2018.12.019CrossRefGoogle Scholar
Swiderski, W., Szabra, D. and Wojcik, J. Nondestructive evaluation of aircraft components by thermography using different heat sources, Proceedings of the 2002 International Conference on Quantitative InfraRed Thermography, QIRT Council, 2002, pp 7984.CrossRefGoogle Scholar
Galietti, U., Palumbo, D., Calia, G. and Pellegrini, M. Non destructive evaluation of composite materials with thermal methods, 15th European Conference on Composite Materials (ECCM 15), Venice (Italy), 2012, pp 19.Google Scholar
Keo, S., Defer, D., Breaban, F. and Brachelet, F. Comparison between microwave infrared thermography and CO2 laser infrared thermography in defect detection in applications with CFRP, Mater. Sci. Appl., 2013, 4, pp 600605. doi: 10.4236/msa.2013.410074Google Scholar
Keo, S.A., Brachelet, F., Breaban, F. and Defer, D. Steel detection in reinforced concrete wall by microwave infrared thermography, NDT. E. Int., 2014, 62, pp 172177. doi: 10.1016/j.ndteint.2013.12.002CrossRefGoogle Scholar
Palumbo, D., Ancona, F. and Galietti, U. Quantitative damage evaluation of composite materials with microwave thermographic technique: feasibility and new data analysis, Meccanica, 2015, 50, pp 443459. doi: 10.1007/s11012-014-9981-2CrossRefGoogle Scholar
Chady, T. Wind turbine blades inspection techniques, Przegld Elektrotechniczny, 2016, 1, pp 36. doi: 10.15199/48.2016.05.01CrossRefGoogle Scholar
Torres, A., De Marco, I., Caballero, B.M., Laresgoiti, M.F., ChomÓn, M.J. and Kondra, G. Recycling of the solid residue obtained from the pyrolysis of fiberglass polyester sheet molding compound, Adv. Polym. Technol., 2009, 28, pp 141149. doi: 10.1002/adv.20150CrossRefGoogle Scholar
Åkesson, D., Foltynowicz, Z., ChristÉen, J., and Skrifvars, M. Microwave pyrolysis as a method of recycling glass fibre from used blades of wind turbines, J. Reinf. Plast. Compos., 2012, 31, pp 11361142. doi: 10.1177/0731684412453512CrossRefGoogle Scholar
Thostenson, E.T. and Chou, T.W. Microwave processing: fundamentals and applications, Compos. Part A. Appl. Sci. Manuf., 1999, 30, pp 10551071. doi: 10.1016/S1359-835X(99)00020-2CrossRefGoogle Scholar
Das, S., Mukhopadhyay, A.K., Datta, S. and Basu, D. Prospects of microwave processing: an overview, Bull. Mater. Sci., 2008, 31, pp 943956. doi: 10.1007/s12034-008-0150-xCrossRefGoogle Scholar
Mgbemena, C.O., Li, D., Lin, M.-F., Liddel, P.D., Katnam, K.B., Thakur, V.K. and Nezhad, H.Y. Accelerated microwave curing of fibre-reinforced thermoset polymer composites for structural applications: a review of scientific challenges, Compos. Part A Appl. Sci. Manuf., 2018, 115, pp 88103. doi: 10.1016/j.compositesa.2018.09.012CrossRefGoogle Scholar
Choudhury, M.R. and Debnath, K. A review of the research and advances in electromagnetic joining of fiber-reinforced thermoplastic composites, Polym. Eng. Sci., 2019, 59, pp 1965–1985. doi: 10.1002/pen.25207CrossRefGoogle Scholar
Kharkovsky, S. and Zoughi, R. Microwave and millimeter wave nondestructive testing and evaluation: overview and recent advances, IEEE Instrum. Meas. Mag., 2007, 10, pp 2638. doi: 10.1109/MIM.2007.364985CrossRefGoogle Scholar
Dobmann, G., Altpeter, I., Sklarczyk, C. and Pinchuk, R. Non-destructive testing with micro-and MM-waves - Where we are - Where we go, Weld. World, 2012, 56, pp 111120. doi: 10.1007/BF03321153CrossRefGoogle Scholar
Zhang, H., Yang, R., He, Y., Foudazi, A., Cheng, L. and Tian, G. A review of microwave thermography nondestructive testing and evaluation, Sensors (Switzerland), 2017, 17, p 1123. doi: 10.3390/s17051123CrossRefGoogle ScholarPubMed
Chen, L.F., Ong, C.K., Neo, C.P., Varadan, V. and Varadan, V.K. Microwave electronics: measurement and materials characterization. John Wiley & Sons, Ltd, 2004, Chichester, UK.CrossRefGoogle Scholar
Li, Z., Haigh, A., Soutis, C., Gibson, A. and Sloan, R. A simulation-assisted non-destructive approach for permittivity measurement using an open-ended microwave waveguide, J Nondestruct. Eval., 2018, 37, p 39. doi: 10.1007/s10921-018-0493-1CrossRefGoogle Scholar
Munalli, D., Dimitrakis, G., Chronopoulos, D., Greedy, S. and Long, A. The use of free-space microwave non-destructive techniques: simulation of damage detection in carbon fibre reinforced composites, 11 th Symposium on NDT in Aerospace, Saclay, 2019, pp 110.Google Scholar
Krupka, J. Frequency domain complex permittivity measurements at microwave frequencies, Meas. Sci. Technol., 2006, 17, R55R70. doi: 10.1088/0957-0233/17/6/R01CrossRefGoogle Scholar
Li, Z., Haigh, A., Soutis, C., Gibson, A. and Sloan, R. Dielectric constant of a three-dimensional woven glass fibre composite: analysis and measurement, Compos. Struct., 2017, 180, pp 853861. doi: 10.1016/j.compstruct.2017.08.061CrossRefGoogle Scholar
Li, Z., Haigh, A., Soutis, C. and Gibson, A. X-band microwave characterisation and analysis of carbon fibre-reinforced polymer composites, Compos. Struct., 2019, 208, pp 224232. doi: 10.1016/j.compstruct.2018.09.099CrossRefGoogle Scholar
Chin, W.S. and Lee, D.G. Binary mixture rule for predicting the dielectric properties of unidirectional E-glass/epoxy composite, Compos. Struct., 2006, 74, pp 153162. doi: 10.1016/j.compstruct.2005.04.008CrossRefGoogle Scholar
Ayappa, K.G., Davis, H.T., Crapiste, G., Davis, E.A. and Gordon, J. Microwave heating: an evaluation of power formulations, Chem. Eng. Sci., 1991, 46, pp 10051016. doi: 10.1016/0009-2509(91)85093-DCrossRefGoogle Scholar
Lorence, M.W. and Pesheck, P.S. Development of products and packaging for use in microwave ovens. CRC Press, 2009, Boca Raton.CrossRefGoogle Scholar
Balanis, C.A. Antenna theory: analysis and design. John Wiley & Sons, 2005, New Jersey.Google Scholar
Case, J.T. and Kenderian, S. Microwave NDT: an inspection method, Mater. Eval., 2017, 75, pp 339346.Google Scholar
Zoughi, R. Microwave non-destructive testing and evaluation. Springer Netherlands, 2000, Dordrecht.CrossRefGoogle Scholar
Ida, N. Microwave and millimeter wave nondestructive testing and evaluation, Handbook of advanced non-destructive evaluation. pp 138. Springer International Publishing, 2019, Cham.CrossRefGoogle Scholar
Hassan, M.R. and Ganjeh, B. Application of microwave heating in aerospace composite processing, Applied Mechanics and Materials, 2014, pp 310314.CrossRefGoogle Scholar
Thostenson, E.T. and Chou, T.-W. Microwave and conventional curing of thick-section thermoset composite laminates: Experiment and simulation, Polym. Compos., 2001, 22, pp 197212. doi: 10.1002/pc.10531CrossRefGoogle Scholar
Drzal, L.T., Hook, K.J. and Agrawal, R.K. Enhanced chemical bonding at the fiber-matrix interphase in microwave processed composites, MRS. Proc., 1990, 189, p 449. doi: 10.1557/PROC-189-449CrossRefGoogle Scholar
Lee, W.I. and Springer, G.S. Microwave curing of composites, J. Compos. Mater., 1984, 18, pp 387409. doi: 10.1177/002199838401800405CrossRefGoogle Scholar
Agrawal, R.K. and Drzal, L.T. Effects of microwave processing on fiber-matrix adhesion in composites, J. Adhes., 1989, 29, pp 6379. doi: 10.1080/00218468908026478CrossRefGoogle Scholar
Boey, F.Y.C. and Lee, T.H. Electromagnetic radiation curing of an epoxy/fibre glass reinforced composite, Int. J. Radiat. Appl. Instrumentation Part C Radiat. Phys. Chem., 1991, 38, pp 419423. doi: 10.1016/1359-0197(91)90118-LCrossRefGoogle Scholar
Lind, A.C., Wear, F.C. and Kurz, J.E. Microwave heating for fiber-placement manufacturing of carbon fiber composites, 95th Annual Meeting of the American Ceramic Society, Westerville, OH, 1993, pp 539–546.Google Scholar
Zhou, J., Li, Y., Li, D. and Wen, Y. Online learning based intelligent temperature control during polymer composites microwave curing process, Chem. Eng. J., 2019, 370, pp 455465. doi: 10.1016/j.cej.2019.03.204CrossRefGoogle Scholar
Ku, H.S., Siores, E. and Ball, J.A.R. Microwave facilities for welding thermoplastic composites and preliminary results, J. Microw. Power Electromagn. Energy., 1999, 34, pp 195205. doi: 10.1080/08327823.1999.11688406CrossRefGoogle ScholarPubMed
Ku, H.S., Macrobert, M., Siores, E. and Ball, J.A.R. Variable frequency microwave processing of thermoplastic composites, Plast. Rubber. Compos., 2000, 29, pp 278284. doi: 10.1179/146580100101541076CrossRefGoogle Scholar
Lester, E., Kingman, S., Wong, K.H., Rudd, C., Pickering, S. and Hilal, N. Microwave heating as a means for carbon fibre recovery from polymer composites: a technical feasibility study, Mater. Res. Bull., 2004, 39, pp 15491556. doi: 10.1016/j.materresbull.2004.04.031CrossRefGoogle Scholar
Oliveux, G., Dandy, L.O. and Leeke, G.A. Current status of recycling of fibre reinforced polymers: Review of technologies, reuse and resulting properties, Prog. Mater. Sci., 2015, 72, pp 6199. doi: 10.1016/j.pmatsci.2015.01.004CrossRefGoogle Scholar
Jones, D.A., Lelyveld, T.P., Mavrofidis, S.D., Kingman, S.W. and Miles, N.J. Microwave heating applications in environmental engineering—a review, Resour. Conserv. Recycl., 2002, 34, pp 7590. doi: 10.1016/S0921-3449(01)00088-XCrossRefGoogle Scholar
Appleton, T.J., Colder, R.I., Kingman, S.W., Lowndes, I.S. and Read, A.G. Microwave technology for energy-efficient processing of waste, Appl. Energy., 2005, 81, pp 85113. doi: 10.1016/j.apenergy.2004.07.002CrossRefGoogle Scholar
Janney, M.A., Calhoun, C.L. and Kimrey, H.D. Microwave sintering of solid oxide fuel cell materials: I, Zirconia-8 mol% Yttria, J. Am. Ceram. Soc., 1992, 75, pp 341346. doi: 10.1111/j.1151-2916.1992.tb08184.xCrossRefGoogle Scholar
Li, Z., Haigh, A., Soutis, C., Gibson, A. and Wang, P. A review of microwave testing of glass fibre-reinforced polymer composites, Nondestruct. Test Eval., 2019, 34, pp 429458. doi: 10.1080/10589759.2019.1605603CrossRefGoogle Scholar
Grant, C. Automated processes for composite aircraft structure, Ind. Robot An Int. J., 2006, 33, pp 117121. doi: 10.1108/01439910610651428CrossRefGoogle Scholar
Qaddoumi, N., Ganchev, S. and Zoughi, R. Microwave diagnosis of low-density fiberglass composites with resin binder, Res. Nondestruct. Eval., 1996, 8, pp 177188. doi: 10.1080/09349849609409597CrossRefGoogle Scholar
Abou-Khousa, M.A., Ryley, A., Kharkovsky, S., Zoughi, R., Daniels, D., Kreitinger, N. and Steffes, G. Comparison of X-Ray, millimeter wave, shearography and through-transmission ultrasonic methods for inspection of honeycomb composites, AIP Conference Proceedings, 2007, pp 9991006.CrossRefGoogle Scholar
Moupfouma, F. Aircraft structure paint thickness and lightning swept stroke damages, SAE. Int. J. Aerosp., 2013, 6, p 2013-01–2135. doi: 10.4271/2013-01-2135CrossRefGoogle Scholar
FAA(Federal Aviation Administration) Airframe Volume 1. United States Department of Transportation, Oklahoma City, OK, 2018.Google Scholar
Palmer, D.D. and Ditton, V.R. Microwave thickness measurements of magnetic coatings, Thompson, D.O. and Chimenti, D.E. (eds.) Review of Progress in Quantitative Nondestructive Evaluation, pp 2029–2036. Springer, 1991, Boston, MA.CrossRefGoogle Scholar
Sayar, M., Seo, D. and Ogawa, K. Non-destructive microwave detection of layer thickness in degraded thermal barrier coatings using K- and W-band frequency range, NDT. E. Int., 2009, 42, pp 398403. doi: 10.1016/j.ndteint.2009.01.003CrossRefGoogle Scholar
Boybay, M.S. and Ramahi, O.M. Non-destructive thickness measurement using quasi-static resonators, IEEE Microw. Wirel. Components. Lett., 2013, 23, pp 217219. doi: 10.1109/LMWC.2013.2249056CrossRefGoogle Scholar
Takeuchi, J.S., Perque, M., Anderson, P. and Sergoyan, E.G. Microwave paint thickness sensor, 2011.Google Scholar
Hinken, J. Device for measuring coating thickness, 2016.Google Scholar
Daliri, A., Galehdar, A., Rowe, W.S.T., Ghorbani, K. and John, S. Utilising microstrip patch antenna strain sensors for structural health monitoring, J. Intell. Mater. Syst. Struct., 2012, 23, pp 169182. doi: 10.1177/1045389X11432655CrossRefGoogle Scholar
Shi, X., Rathod, V.T., Mukherjee, S., Udpa, L. and Deng, Y. Multi-modality strain estimation using a rapid near-field microwave imaging system for dielectric materials, Measurement, 2020, 151, p 107243. doi: 10.1016/j.measurement.2019.107243CrossRefGoogle Scholar
Albishi, A. and Ramahi, O.M. Detection of surface and subsurface cracks in metallic and non-metallic materials using a complementary split-ring resonator, Sensors (Switzerland), 2014, 14, pp 1935419370. doi: 10.3390/s141019354CrossRefGoogle ScholarPubMed
Matsuzaki, R., Melnykowycz, M. and Todoroki, A. Antenna/sensor multifunctional composites for the wireless detection of damage, Compos. Sci. Technol., 2009, 69, pp 25072513. doi: 10.1016/j.compscitech.2009.07.002CrossRefGoogle Scholar
Li, Z., Zhou, L., Lei, H. and Pei, Y. Microwave near-field and far-field imaging of composite plate with hat stiffeners, Compos. Part B Eng., 2019, 161, pp 8795. doi: 10.1016/j.compositesb.2018.10.058CrossRefGoogle Scholar
Navagato, M.D. and Narayanan, R.M. Microwave imaging of multilayered structures using ultrawideband noise signals, NDT. E. Int., 2019, 104, pp 1933. doi: 10.1016/j.ndteint.2019.02.009CrossRefGoogle Scholar
Ali, A., Albasir, A. and Ramahi, O.M. Microwave sensor for imaging corrosion under coatings utilizing pattern recognition, 2016 IEEE International Symposium on Antennas and Propagation (APSURSI), IEEE, 2016, pp 951952.CrossRefGoogle Scholar
Ali, A., Hu, B. and Ramahi, O. Intelligent detection of cracks in metallic surfaces using a waveguide sensor loaded with metamaterial elements, Sensors, 2015, 15, pp 1140211416. doi: 10.3390/s150511402CrossRefGoogle ScholarPubMed
Shrifan, N.H.M.M., Akbar, M.F. and Isa, N.A.M. Prospect of using artificial intelligence for microwave nondestructive testing technique: a review, IEEE Access., 2019, 7, pp 110628110650. doi: 10.1109/ACCESS.2019.2934143CrossRefGoogle Scholar
NXP pushes the limits of solid-state rf energy-new transistor delivers 750 W CW for 915 MHz Applications, https://www.globenewswire.com/news-release/2017/06/20/1026316/0/en/NXP-Pushes-the-Limits-of-Solid-State-RF-Energy.htmlGoogle Scholar
Brinker, K. and Zoughi, R. Future trends for I&M, IEEE Instrum. Meas. Mag., 2020, 23, pp 39. doi: 10.1109/MIM.2020.9082792CrossRefGoogle Scholar
Gray, I., Padiyar, M.J., Petrunin, I., Raposo, J., Fragonara, L.Z., Kostopoulos, V., Loutas, T., Psarras, S., Sotiriadis, G., Tzitzilonis, V., Dassios, K., Exarchos, D., Matikas, T., Andrikopoulos, G. and Nikolakopoulos, G. A novel approach for the autonomous inspection and repair of aircraft composite structures, 18th European Conference on Composite Materials(ECCM 2018), Athens, Greece, 2018, pp 18.Google Scholar
Dahlstrom, R.L. The Emergence of Contact Based Nondestructive Testing NDT at Height Utilizing Aerial Robotic Drone Systems, Offshore Technology Conference. Offshore Technology Conference, 2020.CrossRefGoogle Scholar
Rodriguez, J., Castiblanco, C., Mondragon, I. and Colorado, J. Low-cost quadrotor applied for visual detection of landmine-like objects, 2014 International Conference on Unmanned Aircraft Systems, ICUAS 2014 - Conference Proceedings, IEEE, 2014, pp 8388.CrossRefGoogle Scholar
BBC. Easyjet develops flying robots to inspect aircraft, https://www.bbc.com/news/business-27308232Google Scholar
Bogue, R. Applications of robotics in test and inspection, Ind Robot An Int. J., 2018, 45, pp 169174. doi: 10.1108/IR-01-2018-0012Google Scholar
Aamir, H. Austrian Airlines trials autonomous drones for aircraft inspection, https://www.techspot.com/news/81928-austrian-airlines-trials-autonomous-drones-aircraft-inspection.htmlGoogle Scholar
Thayer, P. Enabling the Fourth Industrial Revolution (4IR) and the role of NDE and monitoring, Insight-Non-Destructive Test Cond. Monit., 2017, 59, pp 469472.Google Scholar
Liu, Z., Meyendorf, N. and Mrad, N. The role of data fusion in predictive maintenance using digital twin, 44th Annual Review of Progress in Quantitative Nondestructive Evaluation, 2018, pp 020023.CrossRefGoogle Scholar