Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-29T01:02:28.419Z Has data issue: false hasContentIssue false

On the generation of the mean velocity profile for turbulent boundary layers with pressure gradient under equilibrium conditions

Published online by Cambridge University Press:  27 January 2016

A. Rona*
Affiliation:
Department of Engineering, University of Leicester, Leicester, UK
M. Monti
Affiliation:
Department of Engineering, University of Leicester, Leicester, UK
C. Airiau
Affiliation:
Institut de Mécanique des Fluides de Toulouse, Université de Toulouse, Toulouse, France

Abstract

The generation of a fully turbulent boundary layer profile is investigated using analytical and numerical methods over the Reynolds number range 422 ≤ Reθ ≤ 31,000. The numerical method uses a new mixing length blending function. The predictions are validated against reference wind tunnel measurements under zero streamwise pressure gradient. The methods are then tested for low and moderate adverse pressure gradients. Comparison against experiment and DNS data show a good predictive ability under zero pressure gradient and moderate adverse pressure gradient, with both methods providing a complete velocity profile through the viscous sub-layer down to the wall. These methods are useful computational fluid dynamic tools for generating an equilibrium thick turbulent boundary layer at the computational domain inflow.

Type
Research Article
Copyright
Copyright © Royal Aeronautical Society 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Rowley, C., Colonius, T. and Basu, A. On self-sustained oscillations in two-dimensional compressible flow over rectangular cavities, J Fluid Mech, 2002, 455, pp 315346.Google Scholar
2. Millikan, C.B. A critical discussion of turbulent flows in channels and circular tubes, 1938, Wiley (Ed.), Fifth International Congress on Applied Mechanics, New York, pp 386392.Google Scholar
3. von Kármán, T. Mechanische Aehnlichkeit und Turbulenz, 1930, Third international congress on applied mechanics, Stockholm, Sweden, pp 8593.Google Scholar
4. Coles, D. The law of the wake in the turbulent boundary layer, J Fluid Mech, 1956, 1, pp 191226.Google Scholar
5. Chauhan, K. Monkewitz, P. and Nagib, H. Criteria for assessing experiments in zero pressure gradient boundary layers, Fluid Dynamics Research, 2009, 41, (2), pp 123, article number 021404.Google Scholar
6. Panton, R. Review of wall turbulence described by composite expansions, Applied Mech Reviews, 2005, 58, (1), pp 136.Google Scholar
7. Buschmann, M. and Gad-el-Hak, M. Recent developments in scaling of wall-bounded flows, Prog in Aerospace Sci, 2007, 47, pp 419467.Google Scholar
8. Lewkowicz, A. An improved universal wake function for turbulent boundary layers and some of its consequences, Flugwiss, Z., Weltraumforsch, 1982, 6, pp 261266.Google Scholar
9. Sandham, N. An alternative formulation of the outer law of the turbulent boundary layer, 1991, Technical report DLR IB 221-91 A 10, DLR, Göttingen.Google Scholar
10. Örlü, R., Fransson, J. and Alfredsson, P. On near wall measurements of wall bounded flows - The necessity of an accurate determination of the wall position, Prog in Aerospace Sci, 2010, 46, pp 353387.Google Scholar
11. Rona, A. and Grottadaurea, M. Generalized Cole’s law and outer layer conformal mapping, J Hydraulic Research, 2010, 48, (5), pp 674679.Google Scholar
12. Finley, P., Poe, K. and Poh, C. Velocity measurements in a thin turbulent water layer, La Houille Blanche, 1966, 21, (6), pp 713721.Google Scholar
13. Zagarola, M.V. and Smits, A.J. Mean-flow scaling of turbulent pipe flow, J Fluid Mech, 1998, 373, pp 3379.Google Scholar
14. Wilcox, D. Turbulence Modeling for CFD, Second Edition, 2002, D.C.W. Industries.Google Scholar
15. Cousteix, J. and Mauss, J. Asymptotic Analysis and Boundary Layers, 2007, Springer-Verlag, Berlin Heidelberg.Google Scholar
16. Cousteix, J. and Mauss, J. Interactive boundary layers in turbulent flow, C.R. Mecanique, 2007, 335, pp 590690.Google Scholar
17. Michel, R., Quemard, C. and Durant, R. Application d’un schéma de longueur de mélange à l’étude des couches limites turbulentes d’équilibre, 1969, Technical Note, 154, ONERA.Google Scholar
18. Spalding, D. The distribution of mixing length in turbulent flows near walls, 1965, Report TWF/TN/1, Imperial College.Google Scholar
19. Galbraith, R. and Head, M. Eddy viscosity and mixing length from measured boundary layer developments, Aero Quarterly, 1975, 26, pp 133154.Google Scholar
20. Österlund, J.M. Experimental Studies of Zero Pressure-Gradient Turbulent Boundary Layer Flow, 1999, PhD thesis, Royal Inst Techn, KTM, Stockholm.Google Scholar
21. Skote, M. Studies of Turbulent Boundary Layer Flow Through Direct Numerical Simulation, PhD thesis, KTH, Sweden, 2001.Google Scholar
22. Skote, M., Henningson, D. and Henkes, R. Direct numerical simulation of self-similar turbulent boundary layers in adverse pressure gradients, Flow, Turbulence and Combustion, 1998, 60, pp 4785.Google Scholar
23. Erm, L. and Joubert, P.N. Low-Reynolds-number turbulent boundary layers, J Fluid Mech, 1991, 230, pp 144.Google Scholar
24. De Graaf, D. and Eaton, J. Reynolds-number scaling of the flat-plate turbulent boundary layer, J Fluid Mech, 2000, 422, pp 319346.Google Scholar
25. Rona, A. and Soueid, H. Boundary layer trips for low Reynolds number wind tunnel tests, 2010, Conference paper 2010-399, American Institute of Aeronautics and Astronautics, Orlando, FL, USA, 48th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, January 2010.Google Scholar
26. Rotta, J. Das in wandnähe gültige Geschwindigkeitsgesetz turbulenter Strömungen, Ing Arch, 1950, 18, pp 277280.Google Scholar
27. Reichardt, H. Vollständige Darstellung der Turbulenten Geschwindigkeitsverteilung in glatten Leitungen, Angew, Z., Math Mech, 1951, 31, pp 208219.Google Scholar
28. van Driest, E. On turbulent flow near a wall, J Aerospace Sci, 1956, 23, pp 10071011.Google Scholar
29. Spalding, D. A single formula for the law of the wall, Transactions of ASME J Applied Mechanics, 1961, ASME 83, p 445.Google Scholar
30. Musker, A. Explicit expression for the smooth wall velocity distribution in a turbulent boundary layer, J American Institute of Aeronautics and Astronautics, 1979, 17, pp 655657.Google Scholar
31. Nitsche, W., Thünker, R. and Haberland, C. A computational Preston tube method, 1983, Fourth symposium on turbulent shear flows, Karlsruhe, West Germany, 12-14 September 1983, pp 261276.Google Scholar
32. Kendall, A. and Koochesfahani, M. A method for estimating wall friction in turbulent wall-bounded flows, Experiments in Fluids, 2008, 44, pp 773780.Google Scholar
33. Monkewitz, P. Chauhan, K. and Nagib, H. Comparison of mean flow similarity laws in zero pressure gradient turbulent boundary layers, Physics of Fluids, 20, (105102).Google Scholar
34. Moses, H. The behavior of turbulent boundary layers in adverse pressure gradient, 1964, Technical Report 73, Gas Turbine Laboratory, MIT, Cambridge, MA, USA.Google Scholar
35. Krogstad, P., Antonia, R. and Browne, L. Comparison between rough- and smooth-wall turbulent boundary layers, J Fluid Mech, 1992, 245, pp 599617.Google Scholar
36. Prandtl, L. Bericht über Untersuchungen zur ausgebildeten Turbulenz, Angew, Z., Math Mech, 1925, 5, 136139.Google Scholar
37. Van Driest, E.R. On dimensional analysis and the presentation of data in fluid-flow problems, ASME J Applied Mathematics, 1946, 13, (1), pp 3440.Google Scholar
38. Cousteix, J. Outer boundary layer self-similar solution, private communication (2009).Google Scholar
39. Klewicki, J. Reynolds number dependence, scaling, and dynamics of turbulent boundary layers, ASME J Fluids Eng, 2010, 132, (94001), pp 148.Google Scholar
40. Klebanoff, P.S. Characteristics of turbulence in a boundary layer with zero pressure gradient, 1954, Technical Note 3178, National Advisory Committee for Aeronautics (NACA).Google Scholar
41. Hinze, J.O. Turbulence, 1975, McGraw-Hill, New York.Google Scholar
42. Townsend, A.A. The structure of the turbulent boundary layer, Mathematical Proceedings of the Cambridge Philosophical Society, 1951, 47, (2), pp 375395.Google Scholar
43. Rona, A. Self-excited supersonic cavity flow instabilities as aerodynamic noise sources, Int J of Aeroacoustics, 2006, 5, (4), pp 335360.Google Scholar