Hostname: page-component-669899f699-7tmb6 Total loading time: 0 Render date: 2025-04-25T12:36:51.417Z Has data issue: false hasContentIssue false

Numerical simulation of different aircraft sub-floor structures during ditching

Published online by Cambridge University Press:  27 September 2024

B. Wang
Affiliation:
College of Mechanical and Vehicle Engineering, Hunan University, Changsha, Hunan 410082, China State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, Hunan 410082, China
L. Nie
Affiliation:
China Academy of Aerospace Science and Innovation, Beijing, 100086, China
Y. Ren*
Affiliation:
College of Mechanical and Vehicle Engineering, Hunan University, Changsha, Hunan 410082, China State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, Hunan 410082, China
*
Corresponding author: Y. Ren; Email: [email protected]

Abstract

To enhance the impact resistance capacity and ensure the floatability of aircraft after ditching, the slamming response of three types of aircraft sub-floor structures are investigated including the flat, cylindrical and ellipsoidal under floor. A coupled Finite Element-Smooth Particle Hydrodynamic (FE-SPH) method is employed with focus on non-linear structural collapse in fluid-structure interaction. The material is defined by bilinear elastic plastic law, and the strain rate effect is taken into account. Further, comparison and analyses are performed in terms of acceleration, local pressure and strains at different speeds. Results show that conventional flat sub floor structures perform poorly during ditching due to excessive peak acceleration and pressure. By contrast, the peak acceleration of ellipsoidal under floor is lower at all measured speeds and the pressure on the sides is reduced. Moreover, the ellipsoidal sub-floor with bi-directional curvature generates smaller plastic strain and deflection of skin, demonstrating better mechanical properties in water impact scenarios.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Royal Aeronautical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Hughes, K., Vignjevic, R., Campbell, J., De Vuyst, T., Djordjevic, N. and Papagiannis, L. From aerospace to offshore: Bridging the numerical simulation gaps–Simulation advancements for fluid structure interaction problems, Int. J. Impact Eng., 2013, 61, pp 4863.CrossRefGoogle Scholar
Zheng, Y., Qu, Q., Liu, P., et al. Numerical analysis of the porpoising motion of a blended wing body aircraft during ditching, Aerosp. Sci. Technol., 2021, 119, p 107131.CrossRefGoogle Scholar
Von Karman, T.H. The impact on seaplane floats during landing (No. NACA-TN-321), 1929.Google Scholar
Greenhow, M. Wedge entry into initially calm water. Appl. Ocean Res., 1987, 9, (4), pp 214223.CrossRefGoogle Scholar
Faltinsen, O.M. Water entry of a wedge by hydroelastic orthotropic plate theory, J. Ship Res., 1999, 43, (03), pp 180193.CrossRefGoogle Scholar
Seddon, C.M. and Moatamedi, M. Review of water entry with applications to aerospace structures, Int. J. Impact Eng., 2006, 32, (7), pp 10451067.CrossRefGoogle Scholar
Pentecôte, N. and Vigliotti, A. Crashworthiness of helicopters on water: Test and simulation of a full-scale WG30 impacting on water, Int. J. Crashworthiness, 2003, 8, (6), pp 559572.CrossRefGoogle Scholar
Yee, H.C., Sweby, P.K. and Griffiths, D.F. Dynamical approach study of spurious steady-state numerical solutions of nonlinear differential equations. I. The dynamics of time discretization and its implications for algorithm development in computational fluid dynamics, J. Comput. Phys., 1991, 97, (2), pp 249310.CrossRefGoogle Scholar
Hughes, K., Campbell, J. and Vignjevic, R. Application of the finite element method to predict the crashworthy response of a metallic helicopter under floor structure onto water, Int. J. Impact Eng., 2008, 35, (5), pp 347362.CrossRefGoogle Scholar
Hughes, K. and Campbell, J. Helicopter crashworthiness: A chronological review of research related to water impact from 1982 to 2006, J. Am. Helicopter Soc., 2008, 53, (4), pp 429441.CrossRefGoogle Scholar
Fasanella, E.L., Boitnott, R.L., Lyle, K.H. and Jackson, K.E. Full-scale crash test and simulation of a composite helicopter, Int. J. Crashworthiness, 2001, 6, (4), pp 485498.CrossRefGoogle Scholar
Fasanella, E.L., Jackson, K.E., Sparks, C.E. and Sareen, A.K. Water impact test and simulation of a composite energy absorbing fuselage section, J. Am. Helicopter Soc., 2005, 50, (2), pp 150164.CrossRefGoogle Scholar
Fasanella, E.L., Jackson, K.E. and Lyle, K.H. Finite element simulation of a full-scale crash test of a composite helicopter, J. Am. Helicopter Soc., 2002, 47, (3), pp 156168.CrossRefGoogle Scholar
Dhileep, K., Kumar, D., Gautham Vigneswar, P.N., Soni, P., Ghosh, S., Ali, S.F. and Arockiarajan, A. Aerodynamic study of single corrugated variable-camber morphing aerofoil concept, Aeronaut. J., 2022, 126, (1296), pp 316344.CrossRefGoogle Scholar
Rana, Z.A., Mauret, F., Sanchez-Gil, J.M., Zeng, K., Hou, Z., Dayyani, I. and Könözsy, L. Computational analysis and design of an aerofoil with morphing tail for improved aerodynamic performance in transonic regime, Aeronaut. J., 2022, 126, (1301), pp 11441167.CrossRefGoogle Scholar
Agarwal, D., Lu, L., Padfield, G.D., White, M.D. and Cameron, N. The use of augmented rotor inflow to predict rotorcraft responses in hover and low-speed manoeuvres, Aeronaut. J., 2022, 126, (1301), pp 11681186.CrossRefGoogle Scholar
Kumar, D., Singh, G., Mohite, P.M., Lau, E.M. and Wang, Y.-C. Role of flexibility on the aerodynamic performance of a resonating hummingbird-inspired wing, Aeronaut. J., 2023, 127, (1308): 193212.CrossRefGoogle Scholar
Liu, M.B. and Liu, G. Smoothed particle hydrodynamics (SPH): an overview and recent developments, Arch. Comput. Methods Eng., 2010, 17, pp 2576.CrossRefGoogle Scholar
Pérez, J.L., Benítez, L.H., Oliver, M. and Climent, H. Survey of aircraft structural dynamics non-linear problems and some recent solutions, Aeronaut. J., 2011, 115, (1173), pp 653668.CrossRefGoogle Scholar
de Wit, A.J., van den Brink, W.M. and Moghadasi, M. Multiple unmanned aerial systems collision impacts on wing leading edge, Aeronaut. J., 2022, 126, (1304), pp 16481677.CrossRefGoogle Scholar
CAST Crashworthiness of Helicopters on Water: Design of Structures Using Advanced Simulation Tools, Project G4RD-CT-2000-00178 partially funded by the European Union under the Aeronautics part of the FP5-GROWTH RTD, 2000–2003. https://cordis.europa.eu/project/rcn/52827_en.html (accessed October 2018).Google Scholar
Delsart, D., GARTEUR HC/AG-15: improvement of SPH methods for application to helicopter ditching, 2007–2010, http://www.garteur.org/Action (accessed October 2018).Google Scholar
Francesconi, E. and Anghileri, M. Towards a methodology to design water impact crashworthy structures, In 66th American Helicopter Society International Annual Forum 2010, 2010 (pp. 222–233). Curran Associates.Google Scholar
Toso-Pentecôte, N., Delsart, D., Vagnot, A. and Kindervater, C. Evaluation of Smooth Particle Hydrodynamic methods for the simulation of helicopter ditching, 2010.Google Scholar
Smart Aircraft in Emergency Situations, Project 266172 partially funded by the European Union under FP7-TRANSPORT, 2011–2014, https://cordis.europa.eu/project/rcn/97150_en.html (accessed October 2018).Google Scholar
Woodgate, M.A. and Barakos, G.N. Implicit computational fluid dynamics methods for fast analysis of rotor flows, AIAA J., 2012, 50, (6), pp 12171244.CrossRefGoogle Scholar
Xiao, T., Qin, N., Lu, Z., Sun, X., Tong, M. and Wang, Z. Development of a smoothed particle hydrodynamics method and its application to aircraft ditching simulations, Aerosp. Sci. Technol., 2017, 66, pp 2843.CrossRefGoogle Scholar
Woodgate, M.A., Barakos, G.N., Scrase, N. and Neville, T. Simulation of helicopter ditching using smoothed particle hydrodynamics, Aerosp. Sci. Technol., 2019, 85, pp 277292.CrossRefGoogle Scholar
Lucy, L.B. A numerical approach to the testing of the fission hypothesis, Astronom. J., 1977, 82, pp 10131024.CrossRefGoogle Scholar
Gingold, R.A. and Monaghan, J.J. Smoothed particle hydrodynamics: theory and application to non-spherical stars, Mon. Not. R. Astron. Soc., 1977, 181, (3), pp 375389.CrossRefGoogle Scholar
Authority, C.A. Summary Report on Helicopter Ditching and Crashworthiness Research. The Stationary Office, Norwich, UK, 2005.Google Scholar
Vignjevic, R. and Meo, M. A new concept for a helicopter sub-floor structure crashworthy in impacts on water and rigid surfaces, Int. J. Crashworthiness, 2002, 7, (3), pp 321330.Google Scholar
Ren, Y. and Xiang, J. Crashworthiness uncertainty analysis of typical civil aircraft based on Box–Behnken method, Chin. J. Aeronaut., 2014, 27, (3), pp 550557.CrossRefGoogle Scholar
Taber, M.J. Crash attenuating seats: Effects on helicopter underwater escape performance, Saf. Sci., 2013, 57, pp 179186.CrossRefGoogle Scholar
Ren, Y. and Xiang, J. The crashworthiness of civil aircraft using different quadrangular tubes as cabin-floor struts, Int. J. Crashworthiness, 2011, 16, (3), pp 253262.CrossRefGoogle Scholar
Thuis, H.C.S.J. and Wiggenraad, J.F.M. A tensor-skin concept for crashworthiness of helicopters in case of water impact, In Annual Forum Proceedings-American Helicopter Society (Vol. 5, pp. 547–547). American Helicopter Society, 1994.Google Scholar
Brooks, C.J., MacDonald, C.V., Donati, L. and Taber, M.J. Civilian helicopter accidents into water: Analysis of 46 cases, 1979–2006, Aviat. Space Environ. Med., 2008, 79, (10), pp 935940.CrossRefGoogle ScholarPubMed
De Florio, F. Airworthiness: An Introduction to Aircraft Certification and Operations. Butterworth-Heinemann, 2016.CrossRefGoogle Scholar
Borrelli, R., Ignarra, M. and Mercurio, U. Experimental investigation on the water impact behavior of composite structures, Proc. Eng., 2014, 88, pp 8592.CrossRefGoogle Scholar
Toso, N.R.S. Contribution to the modelling and simulation of aircraft structures impacting on water, 2009.Google Scholar
Borrelli, R., Mercurio, U. and Alguadich, S. Water impact tests and simulations of a steel structure, Int. J. Struct. Integr., 2012, 3, (1), pp 521.CrossRefGoogle Scholar
Grimaldi, A., Benson, D.J., Marulo, F. and Guida, M. Steel structure impacting onto water: Coupled finite element-smoothed-particle-hydrodynamics numerical modeling, J. Aircr., 2011, 48, (4), pp 12991308.CrossRefGoogle Scholar
Cobb, B.R., Tyson, A.M. and Rowson, S. Head acceleration measurement techniques: reliability of angular rate sensor data in helmeted impact testing, Proc. Inst. Mech. Eng. P: J. Sports Eng. Technol., 2018, 232, (2), pp 176181.Google Scholar
Supplementary material: File

Wang et al. supplementary material

Wang et al. supplementary material
Download Wang et al. supplementary material(File)
File 13 MB