Article contents
Numerical and experimental investigations on the reduction of wind tunnel wall interference by means of adaptive slots
Published online by Cambridge University Press: 04 July 2016
Abstract
The flow in many wind tunnel experiments is affected by the presence of test section walls. The resulting interference can be minimised by correcting the measured model pressures, or by influencing the model flow directly with the use of ventilated or adaptive test section walls. The objective behind the latter technique is to guide the flow in the test section to achieve low interference (i.e. free flow) condition at the model. The most successful technique of flexible, adaptive walls is still restricted to small research wind tunnels due to its mechanical complexity. However, a very promising alternative is the use of adaptive slots in the test section walls. This concept combines the method of passive slotted walls, as they are already implemented in many large wind tunnels, and flexible walls. Additionally, this technique presents the opportunity of full 3D adaptations because the slots can be situated in all four test section walls.
This paper presents preliminary experimental results and the latest numerical calculations on the effectiveness of adaptive slots. The experiments were conducted under high subsonic flow conditions in the new slotted test section of the transonic wind tunnel at TU Berlin’s Aeronautical Institute (ILR).
The numerical results presented are focussed on the 2D slot adaptation of a 2D-model (CAST7 aerofoil) and the 3D slot adaptation of a body of revolution (3D-ETB). In addition, basic studies were made of the flows associated with a single slot on one wall and a bump on the other.
The numerical and the first experimental investigations have shown the potential of adaptive slots to reduce wall interferences effectively. The adaptation accuracy of the investigated slot configurations deviated not more than 3% from the reference case (2D-wall adaptation).
- Type
- Research Article
- Information
- Copyright
- Copyright © Royal Aeronautical Society 2001
References
- 2
- Cited by