Published online by Cambridge University Press: 04 July 2016
The Rayleigh-Ritz method is well known as an approximate method of determining the natural frequencies of a conservative system, using a constrained deflection form. On the other hand, if a general deflection form (i.e. an unconstrained form) is used, the method provides a theoretically exact solution. An unconstrained form may be obtained by expressing the deflection as an expansion in terms of a suitable set of orthogonal functions, and in selecting such a set, it is convenient to use the known normal modes of a suitably chosen “ basic system.” The given system, whose vibration properties are to be determined, can then be regarded as a “ modified system,” which is derived from the basic system by a variation of mass and elasticity. A similar procedure has been applied to systems with a finite number of degrees of freedom. In the present note the method is applied to simple non-uniform beams, and to beams with added masses and constraints. A concise general solution is obtained, and an iteration process of obtaining a numerical solution is described.