Published online by Cambridge University Press: 03 February 2016
Problems related with the mathematical modelling and eigenvibration of a tiltrotor aircraft-wing system built up of anisotropic composite materials are investigated. The wing-mounted rotor that can tilt from the vertical position to a horizontal one is modelled and analysed from the vibrational point of view. In this sense, its behaviour is analysed as a function of the mass size, mass moment of inertia, tilt angle and spin speed of the spinning rotor and of its location along the wing span. While the rotor is considered to be rigid, the aircraft wing is modelled as a thin-walled beam that features a doubly-symmetric cross-section contour and incorporates the elastic coupling between flap-lag-transverse shear, on one hand, and between extension-twist, on the other hand. Numerical simulations are provided and pertinent conclusions are outlined.