Published online by Cambridge University Press: 28 October 2021
A new method for predicting manoeuvre loads on a large transport aircraft with a swept-back wing and a load alleviation system based on control surface deflections is developed. For this purpose, three-dimensional Reynolds-averaged Navier–Stokes (RANS) simulations of the rigid wing–fuselage configuration are performed while the aerodynamics of the tailplane are estimated by means of handbook methods. For a closer analysis, different quasi-steady pitching manoeuvres are chosen based on the CS-25 regulations. One of these manoeuvres is also simulated with active load alleviation, leading to a reduction in the wing-root bending moment by more than 40%. Besides demonstrating the potential of the considered load alleviation system, it is shown which manoeuvres are especially critical in this context and which secondary effects come along with load alleviation.
This paper has been updated. A corresponding correction notice has been published, detailing the changes.
Please note a has been issued for this article.