Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T01:07:32.599Z Has data issue: false hasContentIssue false

X-Ray Point Focusing Using Cylindrically Bent Crystals with Modulated Structures for Synchrotron X-Ray Beams

Published online by Cambridge University Press:  06 March 2019

W. Z. Chang
Affiliation:
Research Unit “X-Ray Optics” of the Max-Planck-Gesellschaft at the Friedrich-Schiller University, Jena, 07743 Jena, Germany
F. N. Chukhovskii
Affiliation:
Research Unit “X-Ray Optics” of the Max-Planck-Gesellschaft at the Friedrich-Schiller University, Jena, 07743 Jena, Germany
E. Förster
Affiliation:
Research Unit “X-Ray Optics” of the Max-Planck-Gesellschaft at the Friedrich-Schiller University, Jena, 07743 Jena, Germany
Get access

Extract

Micron or submicron spatial resolution for x-ray microfluorescence analysis has been pursued using various x-ray point focusing methods,1-4 such as transmission zone plates, tapered capillaries, and Bragg Fresnel lenses. Point focusing using bent crystals does not seem to be a desirable means for achieving a microbeam size, although it is a traditional technique which utilizes perfectly curved crystal surfaces to focus x rays emanating from the source. It is known that point focusing can only be achieved by bending a crystal two dimensionally, which normally introduces imperfections to the crystal since the crystal is an undevelopable surface. Unavoidably, the introduced imperfections will broaden the reflection curve (rocking curve) of the crystal and, in turn, broadens the focal spot size.

Type
Research Article
Copyright
Copyright © International Centre for Diffraction Data 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lai, B., Vun, W. B., Legnini, D., Xiao, Y. H., and Chzas, J., SP1E Proc, vol. 1741, pp 180185, 1992.Google Scholar
2. Larsson, S., Engström, P., Rindby, A. and Stocklassa, B., Advances in X-Ray Analysis, vol. 33, Barrett, C. S. et al. Eds., Plenum Press, New York, pp 623628, 1990.Google Scholar
3. Aristov, V. V., Basov, Yu. A., Redkin, S. V., Snigirev, A. A. and Yunkin, V. A., Nucl. Instrum. & Meth., Vol. A261, pp 7274, 1987.Google Scholar
4. Kuznetsov, S. M., Snigireva, I. I., Snigirev, A. A., Engstrom, P., and Riekel, C., Appl. Phys. Lett., Vol. 65, pp 827, 1994.Google Scholar
5. Chukhovskii, F. N., Chang, W. Z., and Förster, E., J. Appl. Phys. vol. 77, pp 18431848, 1995.Google Scholar
6. Chukhovskii, F. N., Chang, W. Z., and Förster, E., J. Appl. Phys. vol. 77, pp 18491854, 1995.Google Scholar
7. Chang, W. Z. and Förster, E., J. Appl. Phys. vol. 78, pp 4823, 1995.Google Scholar
8. Chang, W. Z. and Förster, E., Microbeam Analysis-1995, Etz, E. S., Ed., VCH Publishers, Inc., New York, pp 443444, 1995.Google Scholar
9. Chang, W. Z., Kley, E. B., Fuchs, H. J., Schnabel, B., Förster, E. and Chukhovskii, F. N., SPIE Proc, Conf. “X-Ray Microbeam Technology and Applications”, 1995.Google Scholar