No CrossRef data available.
Article contents
X-Ray Emission from Laser-Produced Plasmas
Published online by Cambridge University Press: 06 March 2019
Abstract
Intense x-rays are emitted by plasmas formed when sub-nanosecond laser pulses are focused onto materials, Plasmas produced by pulses containing up to 100 J can re-emit over ten percent of the energy as x-rays above about 1.0 keV. These plasmas may be useful flash x-ray sources.
- Type
- Research Article
- Information
- Copyright
- Copyright © International Centre for Diffraction Data 1973
References
1.
Nuckolls, J., Wood, L.
Thiesen, A., and Zimmerman, G., “Laser Compression of Matter to Super-High Densities: Thermonuclear (CTR) Applications,” Nature
239, 139–142 (1972).Google Scholar
2.
Mallozzi, J., Epstein, H. M., Jung, R. G., Applebaum, D. C., Fairand, B. P., and Gallagher, W. J., “X-Ray Emission from Laser Generated Plasmas,” Vol. I and II, Final Report to ARPA under Contract DAAHO 1-7 1-C-055Q, Batteile (1972).Google Scholar
3.
Mead, S. W., Kidder, R. E., Swain, J. E., Ranier, F., and Petruzzi, J., “Preliminary Measurements of X-Ray and Neutron Emission from Laser-Produced Plasmas,” Appl, Optics
11, 345–352 (1972).Google Scholar
4.
Kephart, J. F., Godwin, R. P., and McCall, G. H., “High-Resolution X-Ray Spectroscopy of Brems strahlung from Laser Produced Plasmas,” Bull. A . P . S .
17, 971 (1972).Google Scholar
5.
McMahon, J. M. and Barr, O. C., “Glass Laser System Used Routinely for Target Irradiation,” Proc. 17th. Ann. Conv. SPIE. Sem. on Laser Tech. II, San Diego, Aug. 1973 (to be published).Google Scholar
6.
Behring, W. E., Cohen, L., and Feldman, U., “The Solar Spectrum: Wavelengths and Identifications from 60 to 385 Angstroms,” Astrophysical Jour.
175, 493–523 (1972).Google Scholar
7.
Holzrichter, J. F., Dozier, C. M., and McMahon, J. M., “X-Ray Point Source Projection Photography with a Laser-Produced Source,” Appl. Phys. Letts. (to be published Dec. 1973).Google Scholar
8.
Stamper, J. A., Barr, O. C., Davis, J., Doschek, G. A., Dozier, C. M., Feldman, U., Klein, B. M., Manheimer, W. M., McLean, E. A., McMahon, J. M., Windsor, N. K., and Young, F. C., “Laser-Matter Interaction Studies at NRL,” to be published in the Proceedings of the Third Workshop on” Laser Interactions and Related Plasma Phenomena,” (1973),Google Scholar
9.
Lee, T. N. and Nagel, D. J., “K X-Ray Emission from Laser-Produced Mg Plasma,” Bull. A . P . S .
18, 684 (1973),Google Scholar
10.
Feldman, U., Doschek, G. A., Nagel, D. J., Behring, W. E., and Cohen, L.,, “Transitions of Fe XVIII and Fe XIX Observed in Laser-Produced Plasmas,” The Astrophysical Jour.
183, L43-L45 (1973).Google Scholar
11.
Grundhauser, F. J., Dyke, W. P., and Bennett, S. D., “A Fifty-Millimicrosecond Flash X-Ray System for Hypervelocity Research,” Proceeding of 5th Inter. Congress on High Speed Photog., J. S. Courtney-Pratt, Editor, p. 149–153, SMPTE,(1962).Google Scholar
12.
Fuller, R. G., Williams, R. T., and Kabler, M. N., “Transient Optical Absorption by Self-Trapped Excitons in Alkali Halide Crystals, Phys. Rev. Lett.
25, 446–449 (1970).Google Scholar
13.
Johnson, Q and Mitchell, A. C., “First X-Ray Diffraction Evidence for a Phase Transition during Shock-Wave Compression,” Phys. Rev. Lett.
29., 1369–1371 (1972).Google Scholar
14.
Rasberry, S. D., Scribner, B. F., and Margoshes, M., “Laser Probe Excitation in Spectrochemical Analysis. I: Characteristics of the Source,” Appl. Opt.
6, 81–86 (1967).Google Scholar
15.
Rasberry, S. D., Scribner, B. F., and Margoshes, M., “Laser Probe Excitation in Spectrochemical Analysis. II: Investigation of Quantitative Aspects,” Appl. Opt.
6, 87–93 (1967).Google Scholar