No CrossRef data available.
Article contents
X-Ray Emission from High-Temperature Laboratory, Plasmas
Published online by Cambridge University Press: 06 March 2019
Abstract
The radiation from plasmas hotter than 106 K falls in the x-ray region. Such plasmas are required for fusion power generation. They can also be used as x-ray sources. Measurements of x-ray emission from high temperature plasma yields (a) diagnostic information on the plasma conditions and (b) the characteristics of plasma x-ray sources which determine their applications. Hence, measurements of x-rays from plasmas are finding widespread use.
- Type
- Research Article
- Information
- Copyright
- Copyright © International Centre for Diffraction Data 1974
References
1.
Birks, L. S. and Gilfrich, J. V., “X-Ray Absorption and Emission,” Anal. Chem.
46, 360R-366R (1974).Google Scholar
2.
Nagel, D. J. and Baun, W. L., “Bonding Effects in X-Ray Spectra,” in L. V. Azaroff, Editor, X-Ray Spectroscopy, p. 445–532, McGraw Hill (1974).Google Scholar
3.
Nagel, D. J., “Ion Excitation ot X-Rays,” in McGraw-Hill Yearbook of Science and Technology, p. 432–435, McGraw Hill (1974) and references therein,Google Scholar
4.
Nagel, D. J., Dozier, C. M., Burkhalter, P. G., Doschek, G. A. and Lee, T. N., “Comparison of High-Temperature, High-Density Plasma X-Ray Spectroscopic Sources,” Space Science Reviews, to be published.Google Scholar
5.
Nagel, D. J., “Approaches to High Photon Energy Lasers,” Physica Fennica, 9(S1). 381–388 (1974).Google Scholar
6.See, for example, Barcus, J. R., Brown, R. R., Karas, R. H., Bronstad, K., Trefall, H., Kodama, M. and Rosenberg, T. J., “Balloon Observations of Auroral-Zone X-Rays in Conjugate Regions,” J. Atmos. and Terr. Phys.
35, 497–511 (1973).Google Scholar
7.
Doschek, G. A., “The Solar Flare Plasma: Observation and Interpretation,” Space Science Rev, 13, 765–821 (1972).Google Scholar
8.
Friedman, H., “Cosmic X-Ray Sources: A Progress Report,” Science
181, 395–407 (1973).Google Scholar
9.
Nagel, D. J., “X-Ray Emission Following Ion Beam and Plasma Excitation,” in S. Datz, Editor, Proc, 5th Int. Conf, on Atomic Collisions, to be published.Google Scholar
10.
Glasstone, S. and Loveberg, R. H., “Controlled Thermonuclear Reactions,” Van Nostrand (1960).Google Scholar
12.
Doschek, G. A., “X-Ray and EUV Spectra of Solar Flares and Laboratory Plasmas,” to be published.Google Scholar
13.
Feldman, U., “XUV Spectra From Laser-Produced Plasmas,” Space Science Reviews, to be published.Google Scholar
14.See, for example, Kunkel, W. B., Editor, “Plasma Physics in Theory and Application,” McGraw-Hill (1966).Google Scholar
16.“World Survey of Major Facilities in Controlled Fusion Research-1973 Edition,” Int. Atomic Energy Agency (1973).Google Scholar
18.
Furth, H. P., “Magnetic Confinement of Thermonuclear Plasmas,” in M. D. Fiske and W. W. Havens, Editors, Physics and the Energy Problem-1974, p. 314-336, Am. Inst. Phys. (1974).Google Scholar
19.
Ribe, F. L., “Physics Problems of Thermonuclear Reactors,” in ref, 18, p. 337-356.Google Scholar
20.“Proc. of 5th Symp. on Engr. Problems of Fusion Research,” IEEE Nuclear and Plasma Sci. Soc. (1974).Google Scholar
21.
Robson, A. E., “Linus - An Approach to Controlled Fusion through Use of Megagauss Magnetic Fields,” Reports of NRL Progress, June 1973, p. 7-16.Google Scholar
23.
Boyer, K., “Power from Laser-Initiated Nuclear Fusion,” Astronautics and Aeronautics, Aug, 1973, p. 44-49.Google Scholar
24.
Emmett, J. L., Knuckolls, J. and Wood, L., “Fusion Power by Laser implosion,” Sci. Am.
230, 24–37 (1974).Google Scholar
25.
Brueckner, K. A. and Jorna, S. “Laser-Driven Fusion,” Rev. Mod. Phys.
46, 325–367 (1974).Google Scholar
27.
Askaryan, G. A., Namiot, V. A. and Rabinovich, M. S., “Supercompression of Matter by Reaction Pressure to Obtain Microcritical Masses of Fissioning Matter, to Obtain Ultra-strong Magnetic Fields and to Accelerate Particles,” JETP Lett. 11, 424(1973).Google Scholar
28.
Winterberg, F., “Possibility of Microfission Chain Reactions and Their Application to Controlled Release of Thermonuclear Energy,” Z. Naturforsch
28, 900–906 (1973).Google Scholar
29.
Lerche, R. A., Wehring, B. W. and Wyman, M. E., “Times of Emission of K X-Rays from 1J235 Fission Fragments of Known Mass,” J. Appl. Phys.
45, 2327–2335 (1974).Google Scholar
30.
Lee, T, N., “Solar Flare and Laboratory Plasma Phenomena, Astrophys. J.
190, 467–479 (1974) and references therein.Google Scholar
31.
Mosher, D., Stephanakis, S. J., Vitkovitsky, I. M., Dozier, C. M., Levine, L. S. and Nagel, D. J., “X-Radiation from High-Energy-Density Exploded-Wire Discharges,” Appl. Phys. Lett.
23, 429–430 (1973).Google Scholar
32.
Mather, J. W., Clark, R. W., Downing, J. N., Freuwald, D. A., Ware, K. D., Dozier, C. M., Klein, B. M. and Nagel, D. J., “X-Ray Emission from an Argon Plasma Focus,” Bull. Am. Phys. Soc
18, 1363 (1973).Google Scholar
33.
Mallozzi, P. J., Epstein, H. M., Jung, R. G., Applebaum, D. C., Fairand, B. P. and Gallagher, W. J., “X-Ray Emission from Laser Generated Plasmas,” in M. S. Feld, A. Javan and N. A. Karmit, Editors, Fundamental and Applied Laser Physics, p. 165–220, Wiley (1973).Google Scholar
34.
Nagel, D. J., Burkhalter, P. G., Dozier, C. M., Holzrichter, J. F., Klein, B. M., McMahon, J. M., Stamper, J. A. and Whitlock, R. R., “X-Rav Emission from Laser-Produced Plasmas,” Phys. Rev. Lett.
33, 743–746 (1974).Google Scholar
35.
Vitkovitsky, I. M., “Pligh-Power Exploding Wire Discharges,” Bull. Am. Phys, Soc.
18, 1331 (1973).Google Scholar
36.
Gribkov, V. A., Krokhin, O. N., Sklizkov, G. V., Filippov, N. V. and Filippova, T. I., “Powerful Neutron Source Based on a Z Pinch,” JETP Lett. Translation
18, 319–321 (1973).Google Scholar
37.
Elton, R. C., “Atomic Processes,” in H. R. Griem and R. H. Loveberg, Editors, Plasma Physics, Vol. 9, Part A, p. 115–168, Academic Press (1970).Google Scholar
38.
Noci, G., “Atomic Processes in the Solar Corona,” in C. Macres, Editor, Physics of the Solar Corona, p. 13-28, Reidel (1971).Google Scholar
39.
Gilfrich, J. V. and Birks, L. S., “Spectral Distribution of X-Ray Tubes for Quantitative X-Ray Fluorescence Analysis,” Anal. Chem.
40, 1077–1080 (1968).Google Scholar
40.See review by C. Violet and other contributed papers in this volume.Google Scholar
42.
Burgess, D. D., “Spectroscopy of Laboratory Plasmas,” Space Science Rev.
13, 493–527 (1972).Google Scholar
43.
Stratton, T. F., “X-Ray Spectroscopy,” in R. H. Huddlestone and S. L. Leonard, Editors, Plasma Diagnostic Techniques, p. 359–394, Academic Press (1965).Google Scholar
44.
Bogen, P., “X-Ray Diagnostics of Plasmas,” in W. Locate - Holtgreven, Editor, Plasma Diagnostics, p. 424–477, North-Holland (1968).Google Scholar
45.
Cowan, R. D., “Atomic Self-Consistent-Field Calculations Using Statistical Approximations for Exchange and Correlation,” Phys. Rev.
163, 54–61 (1967).Google Scholar
46.
Cowan, R. D., “Theoretical Calculation of Atomic Spectra Using Digital Computers,” J. Opt. Soc. Am.
58, 808–818 (1968).Google Scholar
47.
Feldman, U., Doschek, G. A., Nagel, D. J., Behring, W. E. and Cowan, R. D., “Laser-Plasma Spectra of Highly Ionized Fluorine,” Astrophys. J.
187, 417–420 (1974).Google Scholar
48.
Burkhalter, P. G., Feldman, U. and Cowan, R. D., “Transitions in Highly Ionized Sn Spectra from a Laser-Produced Plasma,” J. Opt. Soc. Am.
64, 1058–1062 (1974).Google Scholar
49.
Feldman, U., Doschek, G. A., Nagel, D. J., Cowan, R. D. and Whitlock, R. R., “Satellite Line Spectra from Laser-Produced Plasmas,” Astrophys, J.
192, 213–220 (1974).Google Scholar
50.
Burkhalter, P. G., Nagel, D. J. and Cowan, R. D., “Laser-Produced L-Series X-Ray Spectra, to be published.Google Scholar
51.
Burkhalter, P. G., Nagel, D. J. and Whitlock, R. R., “Laser-Produced Rare-Earth X-Ray Spectra,” Phys. Rev. A 9
2331–2336 (1974).Google Scholar
52.
Doschek, G. A., et al., “Stark Broadening of CVI X-Ray Lines in. Spectra of Laser-Produced Plasmas,” to be published.Google Scholar
53.
Nagel, D. J., et al., “Efficiency for Conversion of Laser- Light to X-Rays, 11 to be published.Google Scholar
54.
Klein, B. M., Dozier, C. M., Nagel, D. J. and Whitlock, R. R., “Var iation of the Temperature of Laser-Produced Plasmas with Laser-Pulse and Target Parameters, M Proc. European Conf, on Contr. Fusion and Plasma Physics, Moscow (1973).Google Scholar
55.
Clarke, J. S., Fisher, H, N. and Mason, R, J., “Laser-Driven Implosion of Spherical DT Targets to Thermonuclear Burn Conditions, Phys. Rev. Lett, 30, 89–92 (1973).Google Scholar
56.
Nagel, D. J., “X-Ray Diagnostics of Laser-Compressed Plasmas,” Physica Fennica, 9(S1). 403–405 (1974).Google Scholar
59.
Nagel, D. J., Burkhalter, P. G., Dozier, C. M., Klein, B. M. and Whitlock, R. R., “Power Dependence of Laser-Plasma X-Ray Emission,” Bull. Am. Phys. Soc, 19, 557 (1974).Google Scholar
60.
Nagel, D. J. and Holzrichter, J. F., “Use of a Pyroelectric Device as a Fast X-Ray Detector,” to be published.Google Scholar
61.
Holzrichter, J. F., Dozier, C, M. and McMahon, J. M., “X-Ray Point Source Projection Photography with a Laser - Produced Plasma,” Appl. Phys. Lett, 23, 687–689 (1973).Google Scholar
62.
Lee, T. N. and Nagel, D. J., “K X-Ray Emission from a Laser - Produced Mg Plasma,” Bull, Am. Phys. Soc, 18, 684 (1973).Google Scholar