Hostname: page-component-7bb8b95d7b-cx56b Total loading time: 0 Render date: 2024-10-04T00:08:54.306Z Has data issue: false hasContentIssue false

X-Ray Diffraction Using Synchrotron Radiation - A Catalysis Perspective

Published online by Cambridge University Press:  06 March 2019

J. M. Newsam
Affiliation:
Exxon Research and Engineering Company, Route 22 East, Annandale, NJ 08801, USA
H. E. King Jr.
Affiliation:
Exxon Research and Engineering Company, Route 22 East, Annandale, NJ 08801, USA
K. S. Liang
Affiliation:
Exxon Research and Engineering Company, Route 22 East, Annandale, NJ 08801, USA
Get access

Abstract

Synchrotron X-radiation provides unique opportunities for diffraction experiments and, therefore, for extending our understanding of the structure - property interplay in catalyst systems. The present status of opportunities and applications of synchrotron X-ray diffraction techniques in the structural chemistry and catalysis science areas is overviewed, and illustrated by selected recent results.

Type
I. High Brilliance Sources/Applications
Copyright
Copyright © International Centre for Diffraction Data 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Sokolov, A.A. and Temov, I.M. “Synchrotron Radiation” Pergamon, Oxford. (1968)Google Scholar
2. Kunz, C. ed. “Topics in Current Physics - Synchrotron Radiation; Techniques and Applications” Springer-Verlag, Heidelberg, (1979)Google Scholar
3. Winick, H. and Doniach, S. eds. “Synchrotron Radiation Research” Plenum Press, New York. (1980)Google Scholar
4. Winick, H., Synchrotron Radiation, Scientific American 257 88101 (1987).Google Scholar
5. Hewitt, R.C., Sansone, M., D, K.L.'Amico, Liang, K.S. and Moncton, D.E., Design, construction and use of the Exxon beam lines X10A, X10B and X10C at NSLS, unpublished (1988).Google Scholar
6. Safinya, C.R., Roux, D., Smith, G.S., Sinha, S.K., Dimon, P., Clark, N.A. and Bellocq, A.M., Steric interactions in a model multimembrane system: a synchrotron X-ray study, Phys. Rev. Lett. 57 27182721(1986).Google Scholar
7. Dimon, P., Sinha, S.K., Weitz, D.A., Safinya, C.R., Smith, G.S., Varady, W.A. and Lindsay, H.M., Structure of aggregated gold colloids, Phys. Rev. Lett. 57 595598 (1986).Google Scholar
8. Flannery, B.P., Deckman, H.W., Roberge, W.G. and D, K.L.'Amico, Three dimensional X-ray microtomography, Science 237 14391444 (1987).Google Scholar
9. Van, M.A. Hove and Tong, S.Y., “Surface Crystallography by LEED” Spinger-Verlag, Berlin. (1979).Google Scholar
10. Marra, W.C., Eisenberger, P. and Cho, A.Y., X-ray total external reflection Bragg diffraction: a structural study of the GaAs-Al interface, J. Appl. Phys. 50 69276933 (1979).Google Scholar
11. Fuoss, P.H., Liang, K.S. and Eisenberger, P., in: “Synchrotron Radiation Research: Advances in Surface Science” Bachrach, R.Z. ed. Plenum, New York, in press (1988).Google Scholar
12. Eisenberger, P. and Marra, W.C., X-ray diffraction study of the Ge(100) reconstructed surface. Phys. Rev. Lett, 4. 10811084 (1981).Google Scholar
13. Henrion, J. and Rhead, G.E., LEED studies of the first stages of deposition and melting of lead on low index faces of copper, Surf. Sci. 29 2036 (1972).Google Scholar
14. Hoesler, W. and Moritz, W., LEED analysis of a dense lead monolayer on copper (100), Surf. Sci. 175 6377 (1986).Google Scholar
15. Liang, K.S. et al. , Structure and melting of lead overlayers on copper (100), in preparation (1988); Bull. Am. Phys. Soc. 32(3) p. 452 (1987).Google Scholar
16. Liang, K.S., Fuoss, P.H., Hughes, G.J. and Eisenberger, P., in “The Structure of Surfaces” Van Hove, M.A. and Tong, S.Y. eds. Springer-Verlag, Berlin pp. 246250 (1985).Google Scholar
17. Wolf, S.G., Leiserowitz, L., Lahav, M., Deutsch, M., Kjaer, K. and Als-Nielser, J., Elucidatior of the two-dimensional structure of an α-amino acid surfactant monolayer on water using synchrotron X-ray diffraction, Nature 328 6366 (1987),Google Scholar
18. Liang, K.S., Sirota, E.B., D'Amico, K.L., Hughes, G.J. and Sinha, S.K., Roughening transition of a stepped Cu(113) surface: a synchrotron X-ray scattering study. Phys. Rev. Lett. 59 24472450 (1988).Google Scholar
19. Rosenbaum, G., Holmes, K.C. and Witz, J., Synchrotron radiation as a source for X-ray diffraction, Nature 230 434437 (1971)Google Scholar
20. Phillips, J.C., Wlodawer, A., Yevitz, M.M. and Hodgson, K.O., Applications of synchrotron radiation to protein crystallography - preliminary results, Proc. Natl. Acad. Sci. USA 73 128132 (1976).Google Scholar
21. Phillips, J.C. and Hodgson, K.O., Single-crystal X-ray diffraction and anomalous scattering using synchrotron radiation, in: “Synchrotron Radiation Research”, Winick, H. and Doniach, S. eds. , Plenum Press, New York. pp. 565605565-605 (1980).Google Scholar
22. Helliwell, J.R., Synchrotron X-radiation protein crystallography: instrumentation, methods and applications, Rep. Progr. Phys. Vol. 47 14031497 (1984).Google Scholar
23. Moroney, L.M., Thompson, P. and Cox, D.E., ADPD: a new approach to shared site problems in crystallography, J. Appl. Cryst, 21 206208 (1988),Google Scholar
24. Liang, K.S., Laderman, S.S. and Sinfelt, J.H., Structural study of small catalytic particles using differential anomalous X-ray scattering, J. Chem. Phys, 86 23522355 (1987).Google Scholar
25. Newsam, J.M., The zeolite cage structure, Science 231 10931099 (1986).Google Scholar
26. Parrish, W., Hart, M. and Huang, T.C., Synchrotron X-ray polycrystalline diffractometry, J Appl. Cryst. 19 92100 (1986).Google Scholar
27. Cox, D.E., Hastings, J.B., Thomlinson, W. and Prewitt, C.T., Application of synchrotron radiation to high-resolution powder diffraction and Rietveld refienement, Nucl. Instrum. Method, 208. 573578 (1983).Google Scholar
28. Hastings, J.B., Thomlinson, W. and Cox, D.E., Synchrotron X-ray powder diffraction, J. Appl. Crvst. 17 8595 (1984).Google Scholar
29. Parrish, W. and Hart, M., Advantages of synchrotron radiation for polycrystalline diffractometry, Zeit. Kristallogr. 179 161173 (1988).Google Scholar
30. Carlow, C.R.A. ed. ,“High Resolution Powder Diffraction” Materials Science Forum, Trans Tech Publications, Switzerland. Vol. 9 (1986),Google Scholar
31. Rietveld, H.M., A profile refinement method for nuclear and magnetic structures, J. Appl. Cryst. 2 6571 (1969).Google Scholar
32. Newsam, J.M., Liang, K.S., Hughes, G.J., High resolution powder X-ray diffraction, unpublished (1987).Google Scholar
33. Lightfoot, P., Cheetham, A.K. and Sleight, A.W., Structure of MnPO4. H2O by synchrotron X-ray powder diffraction, Inorg. Chem. 26 35443547 (1987).Google Scholar
34. Toby, B.H., Eddy, M.M., Fyfe, C.A., Kokotailo, G.T., Strobl, H. and Cox, D.E., A high resolution NMR and synchrotron X-ray powder diffraction study of zeolite ZSM-11 J. Mater. Res. 3 563569 (1988).Google Scholar
35. Kokotailo, G.T., Chu, P., Lawton, S.L. and Meier, W.M., Synthesis and structure of synthetic zeolite ZSM-11 , Nature 275 119120 (1978).Google Scholar
36. Attfield, J.P., Sleight, A.W. and Cheetham, A.K., Structure determination of α CrPO4 from powder synchrotron X-ray data, Nature 322 620622 (1986).Google Scholar
37. McKusker, L., The ab initio structure determination of sigma-2 (a new clathrasil phase) from synchrotron powder diffraction data, J. Appl. Cryst. 21 305310 (1988).Google Scholar
38. Cox, D.E., Hastings, J.B., Cardoso, L.P. and Finger, L.W., Synchrotron X-ray powder diffraction at X13A; a dedicated powder diffractometer at the national synchrotron light source, in: “High Resolution Powder Diffraction” C.R.A. Catlow ed. Materials Science Forum. Trans Tech Publications, Switzerland, Vol. 9 pp. 120 (1986).Google Scholar
39. Pawley, G.S., Unit cell refinement from powder diffraction scans, J. Appl. Cryst. 14 357361 (1981).Google Scholar
40. Skelton, E.F., High-pressure research with synchrotron radiation, Physics Today 37 4452 (1984).Google Scholar
41. Buras, B., Gerward, L., Glazer, A.M., Hidaka, M. and Olsen, J.S., Quantitative structural studies by means of the energy-dispersive method with X-rays from a storage ring, J. Appl. Cryst. 12 531536 (1979)..Google Scholar
42. Larson, B.C., White, C.W., Noggle, T.S. and Mills, D.M., Synchrotron X-ray diffraction study of silicon during pulsed lase annealing, Phys. Rev. Lett. 48 337340 (1982).Google Scholar
43. Kvick, A., Applications of synchrotron X-rays to chemical crystallography, in: “Chemical Crystallography with Pulsed Neutrons and Synchrotron X-Rays” Carrondo, M.A. and Jeffrey, G.A. eds. Nato Advanced Study Institute Series C. Vol. 221, Reidel, D., Dordrecht, Holland, pp. 187203 (1988)Google Scholar
44. Moncton, D.E., D, K.L.'Amico, Bohr, J., Als-Nielsen, J., Fleming, R.M., Remeika, J.P. and Vaknin, D., Scattering studies of La2CuCO4 single crystals: charge density modulations, unpublished (1987).Google Scholar
45. Nielsen, F.S., Lee, P. and Coppens, P.,Crystallography at 0. 3Å: Single crystal study of Cr(NH3)6Cr(CN)6 at the Cornell high-energy synchrotron source, Acta Cryst. B42 359364 (1986).Google Scholar
46. Templeton, D.H. and Templeton, L.K., X-ray dichroism and anomalous scattering of potassium tetrachloroplatinate(II), Acta Cryst. A41 365371 (1985).Google Scholar
47. Mao, H.K., Jephcoat, A.P., Hemley, R.J., Finger, L.W., Zha, C.S., Hazen, R.M. and Cox, D.E., Synchrotron X-ray diffraction measurements of single-crystal hydrogen to 26. 5 gigapascals. Science 239 11311134 (1988).Google Scholar
48. King, H.E. and Newsam, J.M., Studies of sodium zeolite X under hydrostatic pressures up to 3. 5GPa, in preparation (1988).Google Scholar
49. Eisenberger, P., Newsam, J.M., Leonowicz, M.E. and W, D.E.. Vaughan, Synchrotron X-ray diffraction from a 800μm3 zeolite microcrystal, Nature 309 4547 (1984).Google Scholar
50. Newsam, J.M. and W, D.E.. Vaughan, The impact of new diffraction techniques in zeolite structural chemistry, in: “Zeolites: Synthesis, Structure, Technology and Application” Drzaj, B., Hocevar, S. and Pejovnik, S. eds. Stud. Surf. Sci. Cat. 24, Elsevier, Holland, pp 239248 (1985).Google Scholar
51. Bachmann, R., Kohler, H., Schulz, H., Weber, H-P., Kupcik, V., Wendschuh-Josties, M., Wolf, A. and Wolf, R., Structure analysis of a CaF2 single crystal with an edge length of only 6μm: an experiment using synchrotron radiation, Angew, Chem. Int. Ed. 22 10111012 (1983).Google Scholar
52. Bachmann, R., Kohler, H., Schulz, H., Weber, H-P., Structure investigation of a 6μm CaF2 crystal with synchrotron radiation, Acta Cryst. A41 3540 (1985).Google Scholar
53. Newsam, J.M., King, H.E. and Modrick, M.A., Microcrystal diffraction techniques, in preparation (1988).Google Scholar
54. Andrews, S.J., Papiz, M.Z., McMeeking, R., Blake, A.J., Lowe, B.M., Franklin, K.R., Helliwell, J.R. and Harding, M.M., Piperazine silicate (EU 19): the structure of a very small crystal determined with synchrotron radiation, Acta Cryst. B44 7377 (1988).Google Scholar
55. Harding, M.M.,The use of synchrotron radiation for Laue diffraction and for the study of very small crystals, in: “Chemical Crystallography with Pulsed Neutrons and Synchrotron X-Rays”, Carrondo, M. A. and Jeffrey, G.A. eds. Nato Advanced Study Institute Series C. Vol. 221, Reidel, D., Dordrecht Holland, pp. 537561 (1988)Google Scholar
56. Wood, I.G. Thompson, P. and Matthewman, J.C., A crystal structure refinement from Laue photographs taken with synchrotron radiation, Acta Cryst. B39 543547 (1983),Google Scholar
57. Clucas, J.A., Harding, M.M. and Maginn, S.J., Crystal structure determination of Rh6(CO)14(dppm) using intensity data from synchrotron radiation Laue diffraction photographs, J. Chem. Soc. Chem, Commun. 185187 (1988).Google Scholar
58. Hajdn, J., Machin, P.A., Campbell, J.W., Greenhough, T.J., Clifton, I.J., Zurek, S., Glover, S., Johnson, L.N. and Elder, M., Millisecond X-ray diffraction and the first electron density map from Laue photographs of a protein crystal. Nature 329 178181 (1987).Google Scholar
59. Moffat, K., Schildkamp, W., Bilderback, D. and Szebenyi, M., unpublished (1988).Google Scholar