Hostname: page-component-7bb8b95d7b-cx56b Total loading time: 0 Render date: 2024-09-12T09:16:31.592Z Has data issue: false hasContentIssue false

X-Ray Diffraction Analysis of Aerosols from Exploding Wires

Published online by Cambridge University Press:  06 March 2019

A. G. Barkow
Affiliation:
Physics Department, Marquette University Milwaukee, Wisconsin
F. G. Karioris
Affiliation:
Physics Department, Marquette University Milwaukee, Wisconsin
J. J. Stoffels
Affiliation:
Physics Department, Marquette University Milwaukee, Wisconsin
Get access

Abstract

In this study, X-ray diffraction analysis is used to investigate the composition of aerosols produced by exploding wires with the current surge from a 4000-joule capacitor. Qualitative analyses of aerosols from 15 different metals exploded in air or inert atmosphere indicate that the particles are crystalline with the normal crystal structure and that explosion of noble metals in air and of base metals in argon produces aerosols consisting of metallic particles. Base metals exploded in air produce aerosols consisting primarily of oxides. Nitrides were not observed. An analytical scheme is described for the Cu-Cu2O-CuO mixtures collected on membrane filters from explosions of copper wires in air. The composition of aerosols is determined for various initial voltages (2-18 kv) on the 20-μf capacitor bank for two series of wires. In one, the weight fraction of CuO increases rapidly with voltage until it accounts for almost the entire sample while the Cu2O and Cu content decrease smoothly. In the other, CuO and Cu2O are about equal for explosions above 6 kv while Cu decreases. Differences are attributed to a change in the circuit and mass of wire used.

Type
Research Article
Copyright
Copyright © International Centre for Diffraction Data 1962

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Chace, W. G., AFCRC-TN-58-457, Air Force Cambridge Research Center, Bedford, Mass., 1958.Google Scholar
2. Richardson, W. H., SCR-53, Sandia Corp., Albuquerque, N.M., 1958.Google Scholar
3. Chace, W. G. and Moore, H. K., eds., Exploding Wires, Plenum Press, New York, 1959.Google Scholar
4. Abrams, R. et al., CH-3629, Argonne National Laboratory, Chicago, 1946.Google Scholar
5. Karioris, F. G. and Fish, B. R., J. Colloid Sci. 17: 155, 1962.Google Scholar
6. Hansen, M. and Anderko, K., Constitution of Binary Alloy's, McGraw-Hill Book Co., Inc., New York, 1958, p. 600.Google Scholar
7. Bennett, F. D., Sci. American 206: 102, 1962.Google Scholar
8. Mehta, S. M. and Bharacha, R. M., Proc. Indian Acad. Sci. A37: 29, 1953.Google Scholar
9. Poddimnova, V. N., J. Anal, Chem. USSR 7: 343, 1952.Google Scholar
10. Ubaldini, I. and Guerrieri, F., Ann, chim. appl. 38: 695, 1948.Google Scholar
11. Lavrukhina, A. K., Zkur. Anal. Khim. 1: 73, 1946.Google Scholar
12. Nisbida, D. and Hirabayashi, K., J. Chem. hid. (Japan) 26: 1123, 1923.Google Scholar
13. Pollard, F. H., McOmie, J. F. W., and Banister, A. J., Chem. & Ind. (London) 1955, p. 1598.Google Scholar
14. Harvey, J., Mathews, H. I., and Wilman, H., Discussions Faraday Soc. 30: 113123, 1960.Google Scholar
15. Zerfoss, S. and Willard, M. L., Ind. Eng. Chen., Anal. Ed. 8: 303, 1936.Google Scholar
16. Cullity, B. D., Elements of X-ray Diffraction, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1956, p. 388.Google Scholar
17. Fautring, G. M. and Carpenter, R. D., Advances in X-ray Analysis, Vol. 1, University of Denver, Plenum Press, New York, 1960, p. 60.Google Scholar
18. Gross, S. T. and Martin, D. E., Ind. Eng. Chetn., Anal. Ed. 16: 95, 1944.Google Scholar
19.General Electric Company, X-ray Department, Direction 12593A.Google Scholar
20. Klug, H. L. and Alexander, L. E., X-ray Diffraction Procedures, John Wiley & Sons, Inc., New York, 1954, p. 310.Google Scholar
21. Averbach, B. L. and Cohen, M., Metals Technology 15, T.P. No. 2342, 1948.Google Scholar
22. Brentano, J. C. M.,J. Appl. Phys. 20: 1215, 1949.Google Scholar
23. Barrett, C. S., Structure of Metals, second edition, McGraw-Hill Book Co., Inc., New York, 1952, pp. 156158.Google Scholar
24. Karioris, F. G., Fish, B. R., and Royster, G. W. Jr., “Aerosols from Exploding Wires.” (To be published in Proceedings of the Second Conference on the Exploding Wire Phenomenon, Boston, 1961.)Google Scholar
25. McCreery, G. L., J. Am. Ceram. Soc. 32: 141, 1949.Google Scholar
26. Bragg, W. L., Darwin, C. G., and James, R. W., Phil. Mag. 1: 897, 1926.Google Scholar
27. Ilavighurst, R. J., Proc. Natl. Acad. Sci. 12: 375, 1926.Google Scholar
28. Klug, H. P., Alexander, L., and Kuromer, E., Anal. Chem. 20: 607, 1948.Google Scholar
29. Cullity, B. D., Elements of X-ray Diffraction, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1956, p. 400.Google Scholar
30. Tucker, T. J., J. Appl. Phys. 32: 1894, 1961.Google Scholar