No CrossRef data available.
Article contents
Use of the Soft X-Ray Spectrograph and the Electron-Probe Microanalyzer for Determination of Elements Carbon Through Iron in Minerals and Rocks
Published online by Cambridge University Press: 06 March 2019
Abstract
The major elements m common rocks are of low atomic number, but analyses of high precision are possible by soft X-ray spectrography if several grams of rock sample are available. The electron-probe microanalyzer is shown to complement this established method by permitting analyses of particles as small as 1 μ in diameter. This paper describes applications of these methods to the analysis of the major and minor elements of silicate, carbonate, and phosphate minerals and rocks.
Elements of particular interest are as follows : carbon in particles enclosed in carbonate rocks; oxygen, as the major constituent of the specimens; phosphorus in phosphatic nodules and apatites; manganese and iron, as colorations in fossil shells; and the group oxygen, sodium, magnesium, aluminum, silicon, potassium, calcium, and iron as complex segregations and zonations within single crystals of several mineral phases.
If the bulk composition of a rock is known, and also the chemistry of the constituent minerals, it is possible to compute quantitative minéralogie analyses of high precision. Thus, the combined use of soft X-ray spectrography and electronprobe microanalysis can provide quantitative chemical and mineralogicat information on the earth's crust on all scales from thousands of square miles (by means of appropriate sampling) down to the scale of 1 μ.
- Type
- Research Article
- Information
- Copyright
- Copyright © International Centre for Diffraction Data 1965