Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-24T01:36:35.504Z Has data issue: false hasContentIssue false

Stress-Depth Profiles in Magnetron Sputtered Mo Films Using Grazing Incidence X-Ray Diffraction (GIXD)

Published online by Cambridge University Press:  06 March 2019

B. L. Ballard
Affiliation:
University of Denver, Engineering Department Denver, Colorado 80208
P. K. Predecki
Affiliation:
University of Denver, Engineering Department Denver, Colorado 80208
D. N. Braski
Affiliation:
HTML, Oak Ridge National Laboratory, Oak Ridge Tennessee, 37831
Get access

Abstract

Intrinsic stresses as a function of σ, the 1/e penetration depth were measured for a smooth, 1μm thick, fine grained, cylindrical post magnetron sputtered molybdenum film deposited on a vycor glass substrate in the dynamic deposition mode. Using grazing incidence diffraction and the Mo (321) reflection, lattice spacing profiles were determined for τ values from 200-4400 Å. The in-plane intrinsic stresses parallel and perpendicular to the post axis were determined employing the ϕ-integral method and assuming elastic isotropy. The results were related to the surface structure and composition profiles via atomic force microscopy (AFM) and auger electron spectroscopy (AES) respectively.

Type
Research Article
Copyright
Copyright © International Centre for Diffraction Data 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Windischman, H., Critical Reviews in Solid State and Mat. Sci., 17 (6), 547, 1992.Google Scholar
2. Thornton, J. A. and Hoffman, D. W., J. Vac. Sci. Technol., 164, 4, 1977.Google Scholar
3. Thornton, J. A., Tabock, J., and Hoffman, D. W., Thin Solid Films, 64, 111, 1979.Google Scholar
4. Hoffman, D. W., and Thornton, J. A., J. Vac. Sci. Technol., 16, 134, 1977.Google Scholar
5. Hoffman, D. W., and Thornton, J. A., J. Vac. Sci. Technol., 17, 380, 1980.Google Scholar
6. Hoffman, D. W., and Thornton, J. A., J. Vac. Sci. Technol., 20, 355. 1982.Google Scholar
7. Hoffman, D. W. Thin Solid Films, 107, 353, 1983.Google Scholar
8. Thornton, J. A. and Lamb, J.L., Thin Solid Films, 119, 87, 1984.Google Scholar
9. Thornton, J. A. and Hoffman, D. W., J. Vac. Sci. Technol., A3, 576, 1985.Google Scholar
10. Segmuller, A. et. al., Treatise on Materials Science and Technology, 17, Academic Press, Inc., 143, 1988.Google Scholar
11. Noyan, I. C. and Cohen, J. B., Residual Stress: Measurement by Diffraction and Interpretation; Springer-Verlag, New York, 1987.Google Scholar
12. Thornton, J. A., J. Vac. Sci. Technol., 11 666, 1974.Google Scholar
13. Cuthrell, R.E., et. al., J. Vac. Sci. Technol. A6 (5), 1988.Google Scholar
14. Lim, G., et al., J. Mater. Res. 2(4) 471, 1987.Google Scholar
15. Toney, M. F. and Brennan, S., J. Appl. Phys, 65, (12) 4763, 1989.Google Scholar
16. Toney, M. F., et al., J. Mater. Res. 3 (2) 351, 1988.Google Scholar
17. Doerner, M. F., and Brennan, S., J. Appl. Phys., 63, 126, 1988.Google Scholar
18. Huang, T. C., Adv. X-ray Analys., 33, 99, 1990.Google Scholar
19. Takayama, T. et al., Adv. X-ray Analys., 33, 99, 1990.Google Scholar
20. Goehner, R. and Eatough, M. O., Powder Diffraction, 7 (1)2 1992.Google Scholar
21. Parratt, L. G., Phys. Rev. 95, 359, 1954.Google Scholar
22. Dosch, H., Phys. Rev. B, 35, 2137, 1987.Google Scholar
23. Lim, G., et. al., J. Mat. Res., 2(4)471, 1987.Google Scholar
24. Lode, W. and Peiter, A., Metall., 35, 758, 1981.Google Scholar
25. Wagner, C. N. J., et. al., Adv. X-ray Analys. 31, 181, 1988.Google Scholar
26. Predecki, P. K., Powder Diffraction, 8 (2) 122, 1993.Google Scholar
27. Predecki, P. K., Zhu, X. and Ballard, B. L., Adv. X-ray Analy. 36, 237, 1993.Google Scholar