Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-27T00:30:06.046Z Has data issue: false hasContentIssue false

Secondary Target X-ray Excitation for In Vivo Measurement of Lead in Bone

Published online by Cambridge University Press:  06 March 2019

P. A. Pella
Affiliation:
National Institute of Standards & Technology Center for Analytical Chemistry Gaithersburg, MD 20899
C. G. Soares
Affiliation:
National Institute of Standards and Technology Center for Radiation Research Gaithersburg, MD 20899
Get access

Extract

Environmental lead exposure continues to be a health hazard, especially to young children, and is a serious problem In the U.S. Since lead is stored in the skeleton, measurement of lead in bone (e.g. finger or tibia) can serve as an Indicator of lifetime exposure. Energy-dispersive x-ray fluorescence (XRF) currently seems to be the method of choice for non-Invasive testing, and is expected to be further developed for screening purposes.

Type
VI. Geological and Other Applications of X-Ray Spectrometry
Copyright
Copyright © International Centre for Diffraction Data 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Mahaffey, K. R., Annest, J. L., Roberts, J., and Murphy, R. N. Engl. J. Med. 307, 573 (1982).Google Scholar
2. Wielopolski, L., Rosen, J. F., Slatkin, D. N., Vartsky, D., Ellis, K. J., and Cohn, S. H., Med. Phys. 10, 248 (1983).10.1118/1.595244Google Scholar
3. Somervaille, L. J., Chettle, D. R., and Scott, M. C., Phys. Med. Biol. 30, 925 (1985).Google Scholar
4. Scott, M. C. and Chettle, D. A., Scand, J.. Work Environ Health 12, 81 (1986).10.5271/sjweh.2162Google Scholar
5. Jones, K. W., Schidlovsky, G., Williams, Jr. E. H., Wedeen, R. P., and Batuman, V., Proceedings of an International Symposium held at Brookhaven National Laboratory, New York, Sept. 28-Oct. 1, 1986, Chapter 57.Google Scholar
6. Wielopolski, L., Rosen, J. F., Slatkin, D. N., Zhang, R., Kalef-Ezra, J. A., Rothman, J. C., Maryanski, M., and Jenks, S. T. Med. Phys. 16, 521 (1389).10.1118/1.596353Google Scholar
7. Rosen, J. F., Markowitz, M. E., Bijur, P. E., Jenks, S. T., Wielopolski, L., Kalef-Ezra, J. A., and Slatkin, D. N., Proc. Natl. Acad. Sci. USA, 86, 685 (1989).10.1073/pnas.86.2.685Google Scholar
8. Bertin, E. P., “Principles and Practice of X-Ray Spectrometric Analysis,” 2nd Ed., Chap. 14, page 624, Plenum Press, New York, 1975.10.1007/978-1-4613-4416-2Google Scholar
9. Hubbell, J. H., Int. J. Appl. Radiat. Isot. 13, 1269 (1982).10.1016/0020-708X(82)90248-4Google Scholar
10. Currie, L. A., “Sources of Error and the Approach to Accuracy in Analytical Chemistry,” Chapt. 4 in Treatise on Analytical Chemistry, Part I, 2nd Ed., Vol. 1, I. M. Kolthoff and P. J. Elving, editors, John Wiley and Sons, Inc., 1978.Google Scholar
11. “Data for Use in Protection Against External Radiation,” ICRP Publication 51, H. Smith, Editor, Pergamon Press, New York, 1987.Google Scholar
12. International Commission on Radiation Units and Measurements, ICRU Report No, 33, 1980, Bethesda, MD.Google Scholar