Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-23T14:54:50.089Z Has data issue: false hasContentIssue false

Resin-Loaded Papers - A Versatile Medium for Sampling and Standardization

Published online by Cambridge University Press:  06 March 2019

Stephen L. Law
Affiliation:
U. S. Bureau of Mines, College Park, Maryland 20740
William J. Campbell
Affiliation:
U. S. Bureau of Mines, College Park, Maryland 20740
Get access

Abstract

Resin-loaded papers composed of approximately 50% cellulose and 50% ion-exchange or chelating resin provide an ideal matrix for many X-ray spectrographic analyses. Standards are prepared by multiple filtration of solutions of known composition through the paper to achieve quantitative collection or by the use of a radiotracer as a monitor for nonquantitative collection. Solutions prepared fram unknown samples are processed in the same manner as the standards.

Advantages of the resin-loaded papers are: reduction of interelement effects because standards and unknowns are present in a similar low X-ray absorbing matrix; physical parameters such as metallurgical history, grain size, and surface preparation are eliminated; and sampling errors are significantly reduced and sensitivity greatly increased by concentrating trace elements separated from large samples.

Application of these papers to a variety of metallurgical, geological, and water samples will be summarized. The possible use of resin-loaded papers as standards for air pollution monitoring will be examined.

Type
Research Article
Copyright
Copyright © International Centre for Diffraction Data 1973

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Campbell, W. J., Spano, E. F. and Green, T. E., Anal. Chem., 38 987 (1966).Google Scholar
2. Campbell, W. J., Green, T. E. and Law, S. L., Amer. Lab., p. 28, (June 1970).Google Scholar
3. Hooton, K. A. H. and Parsons, M. L., Anal. Lett., 6, 461, (1973).Google Scholar
4. Green, T. E., Law, S. L. and Campbell, W. J., Anal. Chem., 42, 1749 (1970).Google Scholar
5. Law, S. L., Science, 174, 285 (1971).Google Scholar
6. Bio. Rad Laboratories, Technical Bulletin 114 (1972).Google Scholar
7. Beckneil, D. E., March, R. H. and Allie, W., Jr., Anal. Chem., 43, 1230 (1971).Google Scholar
8. Link, W. B., Heine, K. S., Jones, J. H. and Wattlington, P., J. Assoc. Offic. Agri. Chemists, 47, 391 (1964).Google Scholar
9. G. H., Luttrell, Jr., More, C and Kenner, C. T., Anal. Chem., 43, 1370 (1971).Google Scholar
10. C., Heitner-Wirguin, and Markovits, G., J. Phys. Chem., 67, 2263 (1963).Google Scholar
11. Law, S. L., Amer. Lab., p. 91 (July 1973).Google Scholar
12. Spano, E. F., Green, T. E. and Campbell, W. J., BuMines Rept. of Invest., 6565 (1964).Google Scholar
13. Hubbard, G. L. and Green, T. E., Anal. Chem. 38, 428 (1966).Google Scholar
14. Spano, E. F. and Green, T. E., Anal. Chem. 38, 1341 (1966).Google Scholar
15. Spano, E. F., Green, T. E. and Campbell, W. J., BuMines Report of luvest. 6308 (1963).Google Scholar
16. Hayden, J. A., Talanta, 14, 721 (1967).Google Scholar
17. Bergmann, J. G., Ehrhardt, C. H., Granatelli, J., and Janik, J. L., Anal. chem., 39, 1258 (1967).Google Scholar
18. Hakkila, E. A., Hurley, R. G., and Waterburg, G. R., Anal. Chem., 41, 665 (1969).Google Scholar
19. Tackett, S. L., Anal. Chem., 43, 972 (1971).Google Scholar
20. Malissa, H. and Marr, I. L., Mikrochim. Acta, p.241, (1971).Google Scholar
21. Walton, R. D., Develop. Appl. Spectrosc., 9, 287 (1971).Google Scholar
22. Hooton, K. A. H. and Parsons, M. L., Anal. Chem., 45, 436 (1973).Google Scholar
23. Campbell, W. J., ASTM Special Technical Publication 349, 48, (1963).Google Scholar
24. Rhodes, J. R., Pradzynski, A., Sieberg, R. D. and Furuta, T., “Applications of Low Energy X-and Gamma Rays”, Ziegler, C. A. (ed.), New York; Gordon and Breach, Science Publishers, Inc. p. 317 (1971).Google Scholar
25. Giauque, R. D., Goulding, F. S., Jaklevic, J. M. and Pehl, R. H., Anal. Chem., 45, 671 (1973).Google Scholar
26. Ehn, E., X-Ray Spectrometry, 2, 27 (1973).Google Scholar
27. Fukuda, K., Sugiyama, K and Mizuike, A., Radioisotopes (Tokyo), 19, 247 (1970).Google Scholar
28. Chamberlain, B. R. and Leech, R. J., Talanta, 14, 597 (1967).Google Scholar
29. Taylor, H. and Beamish, F. E., Talanta, 13, 497 (1968).Google Scholar
30. Fukasawa, T., Fujii, T and Mizuiki, A., Japan Analyst, 17, 713 (1968).Google Scholar
31. Eby, G. N., Anal, Chem., 44, 2137 (1972).Google Scholar
32. Tackett, S. L., Bender, G. H., Brunner, T. R., Duncan, D. J., Fedak, M. G., Gentile, R. F., Hiller, J. F., Hooker, K. A., McAuley, A. J., Rollick, K. L., Sandolfini, J. F., Smith, J. L., Vojtko, J. D., Pekala, P. H., and Williams, S. A., Anal. Lett., 6, 355 (1973).Google Scholar
33. Doolan, P. D., Schwartz, S. L., Hayes, J. R., Mullen, J. C., and Cummings, N. B., Toxiocology and Appl. Pharmacology, 10, 481 (1967).Google Scholar
34. Bergmann, J. G., Ehrhardt, C. H., Granatelli, L., and Janik, J. L., Anal. Chem., 39, 1331 (1967).Google Scholar
35. Latimer, J. N., Bush, W. E., Higgins, L. J., and Shay, R. S., USAEC RMO-3008, 271 (1970).Google Scholar
36. Minns, R. E., Proc. Conf. on Limit. of Detect. in Spec.-Chem. Anal., Univ. of Exeter, p. 45 (1964).Google Scholar
37. Klecka, J. F., AEC Report UCRL-17144 (1966).Google Scholar
38. Tanaka, H. T. Yamamot, Akamatsu, M and Hashizume, G., Japan Analyst, 20, 784 (1971).Google Scholar
39. Radcliffe, D., Anal. Lett., 3, 573 (1970).Google Scholar
40. Montford, B., Canad, Spec, 13, 4 (1968),Google Scholar
41. Rhodes, J. R., Pradzynski, A. R., Hunter, C. B., Payne, J. S., and Lindgren, J. L., Environmental Sci. Tech., 6, 922 (1972).Google Scholar
42. Chessin, H. and McLaren, E. H., Adv. X-Ray Anal., 16, 165 (1972).Google Scholar
43. Krivan, V., Z. Analyt. Chein., 253, 192 (1971).Google Scholar
44. Burkhalter, P. G., Naval Research Laboratory Report 7637 (1973).Google Scholar