Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-19T04:06:13.989Z Has data issue: false hasContentIssue false

A Quantitative Texture Analysis of Pluri-Crystals by Texture Goniometry

Published online by Cambridge University Press:  06 March 2019

A. Vadon
Affiliation:
Laboratoire de Métallurgie Structurale, Faculté des Sciences, Ile du Saulcy 57045, Metz Cedex 1, France
J. J. Heizmann
Affiliation:
Laboratoire de Métallurgie Structurale, Faculté des Sciences, Ile du Saulcy 57045, Metz Cedex 1, France
C. Laruelle
Affiliation:
Laboratoire de Métallurgie Structurale, Faculté des Sciences, Ile du Saulcy 57045, Metz Cedex 1, France
Get access

Extract

To understand how a material evolves - its crystal growth, topotaxy, twinning, phase transformation, plastic deformation, microstress, etc. - it is important to know the crystal orientations, either between them or in respect to the sample.

The crystal texture of the material is quantified by the Orientation Distribution Function (O.D.F.). This function represents the part of the material volume having a given orientation. To compute this O.D.F, we must first measure one or several complete or incomplete pole figures and then analyse them either with Roe-Bunge's harmonic method or with Vadon, Ruer, Baro's vector method. In the case of a very sharp texture, the results obtained with the harmonic method are not good because developing a DIRAC function in spherical harmonics requires a high rank, hence a large number of pole figures. On the contrary, with the vector method, the results are good since discretizing amounts to developing on a step-function basis.

Type
VIII. Advances in XRD Instrumentation and Procedures
Copyright
Copyright © International Centre for Diffraction Data 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Roe, R.J.. Description of crystallite orientation in polycrystaiiine materials. J. Appl. Phys. 36:4 (1965).Google Scholar
2. Bunge, H.J.. “Mathematische Methoden der Texturanalysis”, Akademie Verlag, Berlin (1969).Google Scholar
3. Bunge, H.. “Texture Analysis in Materials Science”, Butterworths, London (1982).Google Scholar
4. Ruer, D.. “Méthode Vectorielle d'Anaiyse de la Texture”, Thèse d'état, Universite de Metz (1976).Google Scholar
5. Ruer, D.. Baro, R.. Méthode vectorielle d’analyse de la texture des matériaux polycristallins de reseau cubique, J. Appl. Cryst.. 10:458, (1977),Google Scholar
6. Vadon, A.. “Généralisation et Optimisation de la Méthode Vectorielle d'Anaiyse des Textures”. Thèse d'état. Université de Metz. (1981).Google Scholar
7. Vadon, A., Ruer, D.. nd Baro, R.. Generalization of the vector method to the hexagonal and trigonal systems, in: “Proceedings of ICOTOM.”, The Iron and Steel Institute of Japan, Tokyo (1981).Google Scholar
8. Vadon, A., Ruer, D.. Baro, R.. The generalization and refinement of the vector method for the analysis of polycrystalline materials, in:“ Advances in X-Ray Analysis”, volume 23, Denver (1979). p. 349.Google Scholar
9. Schaeben, H., Vadon, A.. Normalizing incomplete experimental pole figures by means of the vector method, Texture and Microstruture. 6: 97 (1984).Google Scholar