Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T16:32:42.287Z Has data issue: false hasContentIssue false

Peritectic Melting Sequence of Bi-2212 and Bi-2212/Ag Measured Using Insitu XRD

Published online by Cambridge University Press:  06 March 2019

S. T. Misture
Affiliation:
Institute for Ceramic Superconductivity, New York State College of Ceramics at Alfred University, Alfred, NY 14802
D. P. Mathers
Affiliation:
Institute for Ceramic Superconductivity, New York State College of Ceramics at Alfred University, Alfred, NY 14802
R. L. Snyder
Affiliation:
Institute for Ceramic Superconductivity, New York State College of Ceramics at Alfred University, Alfred, NY 14802
T. N. Blanton
Affiliation:
Analytical Technology Division, Eastman Kodak Company, Rochester, NY 14652-3712
G. M. Zom
Affiliation:
Siemens Corporate Research, Otto-Hahn-Ring 6, D-81730 Munich, Germany
B. Seebacher
Affiliation:
Siemens Corporate Research, Otto-Hahn-Ring 6, D-81730 Munich, Germany
Get access

Abstract

High temperature X-ray diffraction (HTXRD) was used to determine the peritectic melting sequence of BI2Sr2CaCu2O8 (Bi-2212) and Bi-2212+20 wt.% Ag thick films on MgO substrates. The optimized sample preparation technique includes tape casting the powders to form 10μm thick films, and reducing the residual carbon concentration to 1600 ppm by careful thermal treatment before the HTXRD measurements. Lattice parameter analyses were used to determine the compositions of solid solutions present in the partially-melted state. Pour phases form during melting Bi-2212 or Bi-2212 + Ag, including an unidentified phase, (C0,4Sr0,6CuO2, (Ca1,4Sr0,6)CuO3, and (Sr,Ca)0.

Type
Research Article
Copyright
Copyright © International Centre for Diffraction Data 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Polonka, J., Xu, M., Li, Q., Goldman, A. I., and Finnemore, D. K., “In-situ X-Ray Investigation of the Melting of Bi-Sr-Ca-Cu-0 Phases”, Appl. Phys. Lett., 59 [27] 3640-3642 (1991).Google Scholar
2. Hasegawa, T., Kobayashi, H., Kumakura, H., Kitaguchi, H., and Togano, K., “The effect of Ag on the Formation of Bi2Sr2CaCu2O8Thick Film”, Physica C, 222 111118 (1994).Google Scholar
3. Matheis, D. P., Misture, S. T., and Snyder, R. L., “Melt-Texture Processing and High-Temperature Reactions of Bi2Sr2CaCu2O8 Thick KIms”, Physica C, 217, 319324 (1993).Google Scholar
4. Misture, S. T., Matheis, D. P., and Snyder, R. L., “Preparation, Melting Sequences, and Melt-Texturing of Bi-2212 Thick Films”, pp. 582592 in Superconductivity and Its Applications, Vol. 5, Edited by Kwok, H. S., Shaw, D. T., and Naughton, M. J., American Institute of Physics, New York, 1993.Google Scholar
5. Hasegawa, T., Kobayashi, H., Kumakura, H., Kitaguchi, H., and Togano, K., “High-Temperature X-Ray Diffraction Analysis for Bi2Sr2CaCu2O8”, Appl. Phys. Lett., 60 [21] 2692-2694 (1992).Google Scholar
6. Oka, Y., Yamamoto, N., Tomii, Y., Kitaguchi, H., Oda, K. and Takada, J., “Crystalline Phases Formed in the Partially Melted States of Bi-Sr-Ca-Cu-O”, Jpn. J. Appl. Pkys., 28 [5] L801-L803 (1989).Google Scholar
7. Hornung, R., Wilhelm, M., Neumuller, H. W., and Tomandl, G., “Influence of Carbon on the Formation and the Microstructure of B(P)SCCO -110-K - Phase in Ag-Sheathed Tapes, ” unpublished paper (1994).Google Scholar
8. Flukiger, R., Jeremie, A., Hensel, B., Seibt, E., Xu, J. Q., Yamada, Y., “Influence of Carbon Impurities on Jc in Ag/Bi(2223) Tapes”, Adv. Cryo. Eng. 38, 10731079 (1992).Google Scholar
9. Jeremie, A., Flukiger, R., Seibt, E. W., “Effect of Controlled Carbon Impurities on Jc in Ag/Bi(2223) Tapes”, Presented at the Thirteenth International Conference on Magnet Technology, Sept. 1993, Victoria, Canada.Google Scholar
10. Park, C., Misture, S. T., Sriram, D., and Snyder, R. L., “Effect of Ag on Processing and Properties of Bi- & Tl-Based HTSC Materials”, J. Elect. Mat., in press (1995).Google Scholar
11. Misture, S. T., Park, C., Jobst, B., and Snyder, R. L., “Powder Diffraction Data for Several Solid Solutions with the Compositions (CaxSr1-x)CuO2 and (CaxSr1-x)2CuO3”, Powder Diffr., in press (1995).Google Scholar
12. Hornung, R., Neumuller, H. W., Rockford, L., and Tomandl, G., “Preparation of (Bi, Pb)2Sr2Ca7Cu3O10+x Superconducting Thick Films on Ag Tapes by Using Screen Printing Technique - Influence of the Organic Formulation”, p. 633 in Applied Superconductivity, Edited by Freyhardt, H. C., DGM Informationgesellshaft Oberursel, Germany (1993).Google Scholar
13. Ray, R. D. and Hellstrom, E. E., “Ag-Clad Bi-Sr-Ca-Cu-0 Wires, B. Important Factors in Supersolidus Phase Studies”, Physica C, 175, 255260 (1991).Google Scholar
14. Hellstrom, E. E., Ray, R. D., II, and Zhang, W., “Phase Development and Microstructure in Bi-Based 2212 Ag-Clad Tapes Processed at 880, 890, and 905°C: The Cu-Free Phase and (Sr, Ca)CuO2, ” Appl. Supercond., 1 [10-12] 1535-1545 (1993).Google Scholar
15. Smith, G. S. and Snyder, R. L., “PN: A Criterion for Rating Powder Diffraction Patterns and Evaluating the Reliability of Powder Pattern Indexing”, J. Appl. Crystallogr. 12, 6065 (1979).Google Scholar
16. Hubbard, C. R., Lederman, S. M., and Pyrros, N. P., NBS*LSQ82, National, U. S. Bureau of Standards, Private Communication. (1982).Google Scholar
17. Lee, C. L., Chen, J. J., Wen, W. J., Perng, T. P., Wu, J. M., Chin, T. S., Liu, R. S., and Wu, P. T., “Equilibrium Phase Relations in the Bi-Ca-Sr-Cu-0 System at 850 and 900°C”, J. Mater. Res., 5 [7] 1403-1408(1990).Google Scholar
18. Heeb, B., Oesch, S., Bohac, P., and Gauckler, L. J., “Microstructure of Melt-Processed Bi2Sr2CaCu2O8 and Reaction Mechanisms During Post Heat Treatment”, J. Mater. Res., 7 [11] 2948-2955 (1992).Google Scholar
19. Ikeda, Y., Ito, H., Shimomuta, S., Owe, Y., Inaba, K., Hkoi, Z., atvd Takano, M., “Phases and Their Relations in the Bi-Sr-Cu-0 System”, Physica C, 159, 93104 (1989).Google Scholar
20. Hwang, N. M., Roth, R. S., and Rawn, C. J., “Phase Equilibria in the Systems SrO-CuO and SrO-1/2Bi2O3. ” J. Amer. Ceram. Soc., 73 [8] 2531-2533 (1990).Google Scholar
21. Abbattista, F., Frisi, C., Mazza, D., and Vallino, M., “The Subsolidus Equilibria in the Most Basic Zone of the Bi2O3SrO-O System”, Mater. Res. Bull., 26 107117 (1991).Google Scholar
22. Roth, R. S., Rawn, C. J., Ritter, J. J., and Burton, B. P., “Phase Equilibria of the System SrO-CaO-CuO”, J. Amer. Ceram. Soc., 72 [8] 1545-1549 (1989).Google Scholar
23. Miyashita, S., Kato, Y., Komatsu, H., Inoue, T., Hayashi, S., Horiuchi, H., and Sueno, S., “Decomposition of BSCCO(2212) Phase Studied by in-situ Observation”, Physica C, 213, 283286 (1993).Google Scholar
24. PDF-2 and CDF databases, International Centre for Diffraction Data, 12 Campus Boulevard, Newtown Square, PA (1994).Google Scholar
25. Louer, D. and Vargas, R., “Indexation Automatique des Diagrammes de Poudre par Dichotomies Succesives”, J. Appl. Crystallogr. 15, 542545 (1982).Google Scholar
26. Werner, P. E., Eriksson, L., and Westdahl, M., “TREOR, A Semi-Exhaustive Trial-and-Error Powder Indexing Program”, J. Appl. Crystallogr. 18, 367370 (1985).Google Scholar
27. Taupin, D., “A Powder-Diagram Automatic-Indexing Routine”, J. Appl. Crystallogr., 6 380385 (1973).Google Scholar
28. Mighell, A. D. and Himes, V. L., “NBS*Lattice”, Acta Crystallogr., A42, 101105 (1986).Google Scholar