Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-30T23:33:29.083Z Has data issue: false hasContentIssue false

A New Absolute-Scale Small-Angle X-Ray Scattering Instrument

Published online by Cambridge University Press:  06 March 2019

H. Pessen
Affiliation:
Eastern Utilization Research and Development Division U. S. Department of Agriculture Philadelphia, Pennsylvania 19118
T. F. Kumosinski
Affiliation:
Eastern Utilization Research and Development Division U. S. Department of Agriculture Philadelphia, Pennsylvania 19118
S. N. Timasheff
Affiliation:
Eastern Utilization Research and Development Division U. S. Department of Agriculture Philadelphia, Pennsylvania 19118
R. R. Calhoun Jr.
Affiliation:
Eastern Utilization Research and Development Division U. S. Department of Agriculture Philadelphia, Pennsylvania 19118
J. A. Connelly
Affiliation:
Eastern Utilization Research and Development Division U. S. Department of Agriculture Philadelphia, Pennsylvania 19118
Get access

Abstract

A small-angle X-ray scattering apparatus is described which is based on a Guinier focusing arrangement, utilizing a fine-focus tube, a Johann-type curved-crystal monochromator, two goniometermounted beam-defining slits and proportional detection. It differs from previously described instruments in important respects. Using a horizontal goniometer, it affords ease of access and mechanical stability to mounted parts, such as slits and beam stop. The major instrument assemblies--the horizontal tube housing producing the vertical line-shaped beam, and the goniometer table--are mounted on a granite surface plate for stability. For ease, precision and reproducibility in alignment, fine adjustments, with micrometer heads or dial indicators where advisable, are provided for all pertinent rotational and translational motions of the various subassemblies. In particular, provision is made for fine adjustment of the goniometer as a whole with respect to the X-ray source, to facilitate threading the monochromator-focused beam through the slit system and the center of rotation of the detector arm.

Type
Research Article
Copyright
Copyright © International Centre for Diffraction Data 1969

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Guinier, A. and Fournet, G., “Small Angle Scattering of X-Rays,” John Wiley & Sons, Inc., New York, 1955, pp. 83110, 120-123; pp. 111-120; p. 127; pp. 217-259.Google Scholar
2. Beeman, W. W., Kaesberg, P., Anderegg, J. W., and Webb, M. B., “Size of Partcles and Lattice Defects,” in Flügge, S., Editor, Handbuch der Physik, Vol. 32, Springer-Verlag, Berlin, 1950, 1957, pp. 359371.Google Scholar
3. Goldmann, J. B., Small Angle X-Ray Scattering: an Annotated Bibliography, Lockheed Missiles & Space Co., Sunnyvale, California, 1962, (AD 286156, Clearinghouse, U. S. Department of Commerce, Springfield, Va.).Google Scholar
4. Luzzati, V., Witz, J., and Baro, R., “Description d'un appareil de diffusion centrale des rayons X destinée à la mesure des intensités à une échelle absolue,” Journal de Physique— Physique Appliquée, 24:141A146A, (1963).Google Scholar
5. Brumberger, H. and Deslattes, R., “A New High Resolution Small- Angle X-Ray Camera,” J. Res. Nat. Bur. Std., 68C:173175. (1964).Google Scholar
6. Renouprez, A., Bottazzi, H., Weigel, D., and Imelik, B., “Description et réglage d'un appareillage adapté à la diffusion centrale des rayons X,” J. Chim. Phys., 62:131136, (1965).Google Scholar
7. Bonse, U. and Hart, M., “A New Tool for Smal1-Angle X-Ray Scattering and X-Ray Spectroscopy: the Multiple Reflection Diffractometer,” in Brumberger, H., Editor, Small-Angle X-Ray Scattering, Gordon & Breach, New York, 1967, pp. 121130.Google Scholar
8. Koffman, D. M., “An X-Ray Small-Angle Scattering Instrument,” in Newkirk, J. B., Mallett, G. R., and Pfeiffer, H. G., Editors, Advances in X-Ray Analysis, Vol. 11, Plenum press, New York, 1968, pp. 332338.Google Scholar
9. Kavesh, S. and Schultz, J. M., “High Resolution Small and Wide Angle X-Ray Diffractometer,” Rev. Sci. Instr., 40:98101, (1969).Google Scholar
10. Baker, T. W., George, J. D., Bellamy, B. A., and Causer, R., “Fully Automated High-Precision X-Ray Diffraction,” in Newkirk, J. B., Mallett, G. R., and Pfeiffer, H. G., Editors, Advances in X-Ray Analysis, Vol. 11, Plenum Press, New York, 1968, pp. 359375.Google Scholar
11. Kratky, O., Pilz, I., and Schmitz, P. J., “Absolute Intensity Measurement of Small Angle X-Ray Scattering by Means of a Standard Sample,” J. Colloid Interface Sci., 21:2434. (1966).Google Scholar
12. Beeman, W. W., “Structural Studies with Small-Angle X-Ray Scattering,” in Stahmann, M. A., Editor, Polyamino Acids, Polypeptides and Proteins, U. of Wisconsin Press, Madison, 1962, p. 253.Google Scholar
13. Weinberg, D. I., “Absolute Intensity Measurements in Small- Angle X-Ray Scattering,” Rev. Sci. Instr., 34:691696, (1963).Google Scholar
14. Kratky, O., “Die Messung der Absolutintensität der diffusen Röntgenkleinwinkelstreuung—ein Verfahren zur, Wägung” in makromolekularen Systemen,” Z. anal, Chem., 201:161194, (1964).Google Scholar
15. Luzzati, V., “Interprétation des mesures absolues de diffusion centrale des rayons X en collimation ponctuelle ou lineaire; Solutions de particles globulaires et de bâtonnets,” Acta Cryst., 13:939945, (1960).Google Scholar
16. Damaschun, G. and Müller, J., “Die Messung der Absolutintensität der Röntgen-Kleinwinkelstreuung durch Schwächung des Primärstrahls mit Absorptionsfiltern nach vorheriger Monochromatisierung durch Totalreflexion,” Z. Naturforsch., 20a:12741279, (1965).Google Scholar
17. Johann, H. H., “Die Erseugung lichtstarker Röntgenspektren mit Hilfe von Konkavkrystallen,” Z. Physik, 69:185206, (1931).Google Scholar
18. Chipman, D. R., “Monochromation of X-rays by Crystals, for Use in Diffuse Scattering Measurements,” in Herbstein, F. H., Editor, Methods of Obtaining Monochromatic X-Rays and Neutrons, Int. Union of Cryst., Utrecht, The Netherlands, 1967, pp. 5558.Google Scholar
19. Witz, J., “Focusing Monochromators,” Acta Cryst., A25:3042. (1969).Google Scholar
20. Kratky, O., Porod, G. and Skala, Z., “Verschmierung und Entschmierung bei Röntgen-Kleinwinkeldiagrammen,” Acta Physica Austriaca, 13:76128, (1960).Google Scholar
21. Guinier, A., Théorie et Technique de la Radiocristallographie, Dunod Cie., Paris, 1945, 1956, 1964, p. 192.Google Scholar
22. Aschaffenburg, R. and Drewry, J., “Improved Method for the Preparation of Crystalline β-Lactoglobulin and α-Lactalbumin from Cow's Milk.” Biochem. J., 65:273277, (1957).Google Scholar
23. Witz, J., Timasheff, S. N., and Luzzati, V., “Molecular Interactions in β-Lactoglobulin. VIII. Small-Angle X-Ray Scattering Investigation of the Geometry of β-Lactoglobulin A Tetramerisation,” J. Am. Chem. Soc., 86:168173, (1964).Google Scholar
24. Luzzati, V., Witz, J., and Nicolaieff, A., “Détermination de la masse et des dimensions des protéines en solution par la diffusion centrale des rayons X mesurée a l'échelle absolue: Exemple du lysozyme,” J. Mol. Biol., 3:367378, (1961).Google Scholar
25. Rartha, G., Bello, J., and Barker, D., “Tertiary Structure of Ribonuclease,” Nature, 213:862865, (1967).Google Scholar