Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-23T15:15:36.106Z Has data issue: false hasContentIssue false

Measurements and Prediction of Residual Stress in Metal Matrix Composites

Published online by Cambridge University Press:  06 March 2019

Torsten Ericsson
Affiliation:
Department of Mechanical Engineering, Linköping University S-581 83 Linköping, Sweden
Anders Ohlsson
Affiliation:
Department of Mechanical Engineering, Linköping University S-581 83 Linköping, Sweden
Christer Persson
Affiliation:
Department of Mechanical Engineering, Linköping University S-581 83 Linköping, Sweden
Get access

Extract

There has been a great interest in metal matrix composites during the last 10-15 years. The reason is their potential to achieve a high strength and good dimensional stability in a large temperature range and to obtain a good stiffness. The interest has particularly been focused on light metals reinforced with a continuous or discontinuous ceramic phase. The reinforcement and the matrix have very different properties such as thermal expansion and elastic modulus, which of course is the point in using this type of reinforcement. These differences between matrix and reinforcement gives rise to residual stresses after temperature changes or after plastic deformation.

Type
IX. Stress and Strain Determination by Diffraction Methods, Peak Broadening Analysis
Copyright
Copyright © International Centre for Diffraction Data 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Macherauch, E., Wohlfahrt, H. and Wolfstieg, U., Harterei Techn. Mitteilungen 28: 201 (1973).Google Scholar
2. Noyan, I. C. and Cohen, J. B., “Residual Stresses”, Springer Verlag, Berlin (1987).Google Scholar
3. Castex, L., Sprauel, J. M., Barral, M., Lebrun, J. L. and Torbaty, S. in “Proc. 21st Symp. X-ray Stress and Mech. Beh. of Materials”, Soc, Mat, Sci., Kyoto (1986).Google Scholar
4. Hanabusa, T., Nishioka, K. and Fujiwara, H., Criterion for the triaxial X-ray residual stress analysis, Zeit. f. Metallkunde 74:307313(1983).Google Scholar
5. Cohen, J.B., The measurement of stresses in composites, Powder Diffraction 1:1521(1986).Google Scholar
6. Krawitz, A. D., The use of X-ray strass analysis for the WC-base cermets. Mat. Sci. Eng, 75: 2936(1985).Google Scholar
7. Shouxin, L., Lizhi, S., Zhengming, S. and Zhongguang, W., Thermal residual stress relaxation at surface of SiC/Al composite, Scripta Met, et Mater, 25: 24312433(1991),Google Scholar
8. Tako, Y. and Taya, M., Thermal expansion coefficients and thermal stresses in an aligned short fiber composite, Trans. ASME 52: 806 (1985).Google Scholar
9. Arsenault, R. J. and Taya, T., Thermal residual stress in metal matrix composites. Acta Met. 35: 651659(1987).Google Scholar
10. Taya, T. and Arsenault, R. J., Micromechanics of defects in solids, Martinus Nijhoff Publ., (1982).Google Scholar
11. Withers, P. J., Stobbs, W. M. and Pedersen, O. B., The application of the Eshelby method of internal stress determination to short fibre metal matrix composites. Acta Met. 37: 30613084(1989).Google Scholar
12. Levy, A. and Papazian, J. M., Elastoplastic finite element analysis of short fiber reinforced SiC/Al composites: effect of thermal treatment, Acta Met, et Mater. 39:27552766 (1991).Google Scholar
13. Levy, A. and Papazian, J. M., Thermal cycling of discontinously reinforced SiC/Al composites in “Metal Matrix Composites”, N. Hansen, ed., Riso National Lab., Roskilde (1991).Google Scholar
14. Nair, S. V. and Kim, H. G., Thermal residual stress effects on constitutive response of a short fiber or whisker reinforced metal matrix composite, Scripta Met, et Mater. 25: 23592364(1991).Google Scholar
15. Povirk, G. L., Needleman, A. and Nutt, S. R., An analysis of residual stress formation in whisker reinforced Al-Si composites. Mat. Sci. Eng, A125: 129140(1990).Google Scholar
16. Jarry, P., Toitot, D. and Janin, B., Homogenized FEM of thermal residual microstresses in discontinously reinforced MMC in “Int. Conf. on Res. Stress. ICRS2”, Beck, G., S. Denis and A. Simon, eds., Elsevier Appl. Science, London (1989).Google Scholar
17. Breban, P., Chambolle, D., Baptiste, D. and Francois, D., Modelling of the influence of the residual stresses on the MMC behaviour by a micromechanics approach in “Residual Stresses III”, Fujiwara, H., Abe, T. and Tanaka, K., eds., Elsevier Applied Science, London (1992).Google Scholar
18. Povirk, G. L., Stout, M. G., Bourke, M., Goldstone, J. A., Lawson, A. L., Lovato, M., Macewen, S. R., Nutt, S. R. and Needleman, A., Thermally and mechanically induced residual strains in Al-Si composites, Acta Met, et Mater. 40: 23912412(1992).Google Scholar
19. JarvstrSt, N., Homogenization and the mechanical behaviour of metal composites, in “Residual Stresses III”, H. Fujiwara, T. Abe and K. Tanaka, eds., Elsevier Applied Science, London (1992).Google Scholar
20. Allen, A. J., Bourke, M. A. M., Dawes, S., Hutchings, M. T. and Withers, P. J., The analysis of internal strains measured by neutron diffraction in Al/SiC metal matrix composites, Acta Met. et Mater. 40: 23612373(1992).Google Scholar
21. Ledbetter, H. M. and Austin, M. W., Internal strain (stress) in an SiC-Al particle reinforced composite: an X-ray study. Mat. Sci. and Eng. 89: 5361(1987).Google Scholar
22. Lu, J., Flavenot, J. Fl. and Thery, S., Study on the effect of the finishing treatment on the residual stress gradient in SiC reinforced Al-MMC, I. Comp. Techn. and Res., ASTM 12: 232238(1990).Google Scholar
23. Sun, Z. M., Li, J. B., Wang, Z. G. and Lu, Y., Tri axial residual stress measurements in SiC/Al composite by parallel, beam X-ray diffraction in “Residual Stresses III”, H. Fujiwara, T. Abe and K. Tanaka, eds., Elsevier Applied Science, London (1992).Google Scholar
24. Arsenault, R. J., Residual stresses in composites in “Residual Stresses III”, H. Fujiwara, T. Abe and K. Tanaka, eds., Elsevier Applied Science, London (1992).Google Scholar
25. Bonnafe, J. P. and Lebrun, J. L., Residual stresses in matrix and reinforced phases of SiC short fiber reinforced aluminium matrix composites in “Metal Matrix Composites”, N. Hansen, ed., Risd National Lab., Roskildc (1991).Google Scholar
26. Braham, C., Lodinj, A., Bonnafe, J. P., Lebrun, J. L., Perrin, M. and Chenal, B., Determination by neutron and X-ray diffraction of residual stresses in Al-SiC composites, in “Residual Stresses III”, H. Fujiwara, T. Abe and K. Tanaka, eds., Elsevier Applied Science, London (1992).Google Scholar
27. Ericsson, T., Lebrun, J. L., Sainfort, P., Chenal, B. and Ph. Jarry, Experimental study of residual macro- and microstresses in aluminium based composites in “Int. Conf. on Res. Stress, ICRS2”, G. Beck, S. Denis and A. Simon, eds., Elsevier Appl. Science, London (1989).Google Scholar
28. Ericsson, T., Lebrun, J. L., Sainfort, P., B, Chenal and Ph. Jarry, Residual stresses in two SiC and mullite reinforced Al-alloys in “New Materials and Processes”, I. L. H. Hanson, H. Lilholt, eds., Danish Soc. for Materials Testing and Research, Copenhagen (1989).Google Scholar
29. Ohlsson, A., Persson, C. and Ericsson, T.,. Influence of thermal cycling on the residual stresses in a SiC reinforced Al-alloy in “New Materials and Processes”, I. L. H. Hanson, H. Lilholt, eds., Danish Soc. for Materials Testing and Research, Copenhagen (1989).Google Scholar
30. Ericsson, T. and Vigneron, B., 3D-residual stresses in AA 7075 and AA 7050 with 15 vol % SiCw after thermal cycling under constant applied load in “Residual Stresses - Measurement, Calculation, Evaluation”, V. Hauk, H, Hcugavdy, E, Macherauch, edsv DGM Verlag, Oberursel (1991).Google Scholar
31. Ohlsson, A. and Ericsson, T., Elevated temperature X-ray measurements of thermal residual stresses and stress relaxation in Al2O3 fibre reinforced Al-Mg alloy in “Residual Stresses III”, H. Fujiwara, T. Abe and K. Tanaka, eds., Elsevier Applied Science, London (1992).Google Scholar
32. Persson, C. and Ericsson, T., Residual stress in SiC reinforced aluminium alloys after plastic straining in “Residual Stresses III”, H. Fujiwara, T. Abe and K. Tanaka, eds., Elsevier Applied Science, London (1992).Google Scholar
33. Tsai, S., Mahulikar, D., Marcus, H. L., Noyan, I. C. and Cohen, J. B., Residual stress measurement on Al-graphite composites using X-ray diffraction. Mat. Sci. Eng. 47:145149(1981).Google Scholar
34. James, M. R., Residual stresses in metal matrix composites in “Int. Conf. on Residual Stress, ICRS2”, G. Beck, S. Denis and A. Simon, eds., Elsevier Appl. Science, London (1989).Google Scholar
35. Cox, B. N., James, M. R., Marshall, D. B. and R. C Addison, Determination of residual stresses in thin sheet titanium aluminide composites, Met. Trans. 21A;27012707(1990).Google Scholar
36. James, M. R., Behaviour of residual stresses during fatigue of metal matrix composites in “Residual Stresses III”, H. Fujiwara, T. Abe and K. Tanaka, eds., Elsevier Applied Science, London (1992).Google Scholar
37. Ikeuchi, Y., Hanabusa, T., Fujiwara, H., Thermal stress behaviour in alumina fiber reinforced Al-composite in “Residual Stresses III”, H. Fujiwara, T. Abe and K. Tanaka, eds., Elsevier Applied Science, London (1992).Google Scholar
38. Lu, Y. and Fukunaga, H., X-ray residual stress analysis of heat treated SiC/AI composite wire in “Residual Stresses III”, H. Fujiwara, T. Abe and K. Tanaka, eds., Elsevier Applied Science, London (1992).Google Scholar
39. Allen, A. J., Bourke, M., Hutchings, M. T., Krawitz, A. D., Windsor, C. G., Neutron diffraction measurements of internal stress in bulk materials- MMC in “Residual Stresses in Science and Technology”, DGM Verlag, Oberursel (1987).Google Scholar
40. Lilholt, H. and Juul Jensen, D., Internal stresses measured by neutron diffraction in MMC exposed to thermal treatments in “Conf. Proc. TEQC87” (1987).Google Scholar
41. Withers, P. J., Juul Jensen, D., Lilholt, H. and Stobbs, W. M., The evaluation of internal stresses in a short fiber metal matrix composi:e by neutron diffraction in “Proc. ICCM6/ECCM2”, F. L. Matthews et al eds., Elsevier Applied Science, London (1987).Google Scholar
42. Withers, P. J., Lilholt, H., Juul Jensen, D., Stobbs, W. M., An examination of diffusional stress relief in MMC in “Mechanical and physical behaviour of metallic and ceramic composites”, S, I. Andersen et al. eds., Riso National Lab., Roskilde (1990).Google Scholar
43. Povirk, G. L., Stout, M. G., Bourke, M., Goldstone, J. A., Lawson, A. C., Lovato, M., MacEwen, S. R., Nutt, S. R. and Needleman, A., Mechanically induced residual stresses in Al/SiC composites, Scripta Met. 25: 1883 (1991).Google Scholar
44. Majumdar, S., Singh, J. P., Kupperman, D. and Krawitz, A., Application of neutron diffraction to measure residual strains in various engineering composite materials, 1. Eng. Mat, and Techn. (1989).Google Scholar
45. Saigal, A., Kupperman, D. S. and Majumdar, S., Residual strains in titanium matrix high temperature composites. Mat. Sci, Eng. A150: 5966(1992).Google Scholar
46. Tanaka, K., X-ray measurement of triaxial residual stress in ceramic composites and coating, in “Proc. Denver X-ray Conf. 1992”, Plenum Press (1992).Google Scholar
47. Odfin, M., Residual stress in ceramics and ceramic composites, Linkoping Studies in Science and Technology, Licthesis no 329, Linkoping (1992).Google Scholar
48. Krawitz, A., private communication (1991).Google Scholar