Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-23T15:00:11.379Z Has data issue: false hasContentIssue false

Mass Absorption Coefficients and Quantitative Microanalysis of Refractory Metal Carbides

Published online by Cambridge University Press:  06 March 2019

Lawrence J. Gray
Affiliation:
Department of Metallurgy and Materials Research Laboratory, University of Illinois, Urbana, Illinois
C. A. Wert
Affiliation:
Department of Metallurgy and Materials Research Laboratory, University of Illinois, Urbana, Illinois
Get access

Abstract

Consideration of variations in atomic potentials permits an estimation of the mass absorption coefficients of many elements for the characteristic emission lines of carbon, nitrogen and oxygen. The accuracy of (μ/p) values presented is better than 5% in most cases. These values are tested in the microanalysis of defect titanium carbides. Limitations of the theoretical correction procedures lead to the definition, of a set of analysis conditions which permit carbon analysis to within 1.0% absolute.

Type
Research Article
Copyright
Copyright © International Centre for Diffraction Data 1968

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Henke, B. L., Elgin, R. L., Lent, R. E. and Ledlnghaiti, R. B., Air Force Office of Aerospace Research, Report AFOSR 67-1254, Pomona College, Claremont, California, 1967.Google Scholar
2. Ranzetta, G. V. T. and Scott, V. D., “Light Element Mocroanalysls of Oxides and Carbides”, in R. Castaing, P. Deschamps and J. Philibert, Editors, X-Ray Optics and Microanalysis, Hermann, Paris, 1966, p. 254262.Google Scholar
3. Duncumb, P. and Melford, D. A., “Quantitative Applications of Ultra-soft X-Ray Microanalysis in Metallurgical Problems”, in R. Castaing, P. Deschamps and J. Philibert, Editors, X-Ray Optics and Microanalysis, Hermann, Paris, 1966, p. 240253.Google Scholar
4. Deslattes, R. D., “An Experimental Study of X-Ray Attenuation Coefficients, 8-30 KeV”, Air Force Office of Aerospace Research Report AFOSR TN-58-784, 1958, 76 p. ASTIA Doc. 202-009.Google Scholar
5. Sweeney, W. R., Seal, R. and Birks, L., “X-Ray Mass Absorption Coefficients for Mo, Nb, Zr, and Ti”, Spectrochimica Acta, 17, 364365, 1961.Google Scholar
6. Wrede, W., “The Mass Attenuation Coefficients for Monochromatic X-Rays of Wavelength 0.1279 to 1.433 A of 24 Elements Between C (6) and Ce (58)”, Ann. Phys, 36, ser. 5, p. 681-695, 1939.Google Scholar
7. Grosskurth, K., “New Measurements of the Mass Attenuation Coefficients for Sixteen Elements and Paraffin Using Monochromatic X-Rays Between 0.128 and 2.5 X”, Ann. Phys., 20, ser. 5, p. 197-232, 1934.Google Scholar
8. Laubert, S., “The Mass Attenuation, Photoabsorption and Scattering Coefficients for Monochromatic X-Rays of Ni (28), Cu (29), Ag (47), Cd (48), Sn (50) Ta (73), W (74), Lr (77), Pt (78), Au (79), and Pb (82)”, Ann. Phys., 40, ser. 5, p. 553-578, 1941.Google Scholar
9. Heinrich, K. F. J., “X-Ray Absorption Uncertainty”, in T. D. McKinley, K. F. J. Heinrich and D. B. Wittry, Editors, The Electron Microprobe, John Wiley and Sons, Inc., New York, 1966, p. 296378.Google Scholar
10. Hughes, G. D. and Woodhouse, J. B., “X-Ray Mass Absorption Coefficients”, in R. Castaing, P. Deschamps and J. Philibert, Editors, X-Ray Optics and Microanalysis, Hermann, Paris, 1966, p. 202210.Google Scholar
11. Hughes, G. D., Woodhouse, J. B. and Bucklow, I. A., “The Determination of Some X-Ray Mass Absorption Coefficients”, Brit. J. Appl. Phys., ser. 2, 16 695706, 1968.Google Scholar
12. Ershov, O. A., Brytov, I. A. and Lukirskii, A. P., “Reflection of X-Rays From Certain Substances in the Region From 7 to 44 A”, Optics and Spect. (USA), 22, 66-69, 1967.Google Scholar
13. Lukirskii, A. P., Savinov, E. P., Ershov, O. A. and Shepelev, Yu. F., “Reflection Coefficients of Radiation in the Wavelength Range from 23.6 to 113 A for a Number of Elements and Substances and the Determination of the Refractive Index and Absorption Coefficient”, Optics and Spect. (USA), 16, 168-172, (1964).Google Scholar
14. Jaegle, P., Combet Farnoux, F., Dhex, P., Cremonese, M. and Onori, G., “Experimental and Theoretical Study of the Absorption of Ultra-soft X-Rays i n Platinum and Tantalum”, Phys. Letters, 26A, 364-365, 1968.Google Scholar
15. Haensel, R., Kunz, C., Sasaki, T. and Sonntag, B., “Absorption Measurements of Copper, Silver, Tin, Gold and Bismuth in the Far Ultraviolet”, Applied Optics, 7, 301306, 1968.Google Scholar
16. Leroux, J., “Method for Finding Mass Absorption Coefficients by Empirical Equations and Graphs”, in W. M. Muellar, Editor, Advances in X-Ray Analysis, Vol. 5, Plenum Press, New York, 1962, p. 153160.Google Scholar
17. Frazer, J. Z., “A Computer Fit to Mass Absorption Coefficient Data”, S. I. O. Reference No. 67-29, Univ. of California, La Julia, California, 1967.Google Scholar
18. Victoreen, J. A., “Probable X-Ray Mass Absorption Coefficients for Wavelengths Shorter Than the K Critical Absorption Wavelength”, J. Appl. Phys., 14, 95102, 1943.Google Scholar
19. Victoreen, J. A., “The Calculation of X-Ray Mass Absorption Coefficients”, J. Appl. Phys., 20, 11411147, 1949.Google Scholar
20. Henke, B. L., White, R. and Lundberg, B., “Semiempirical Determination of Mass Absorption Coefficients for the 5 to 50 Å X-Ray Region”, J. Appl. Phys., 28, 98105, 1957.Google Scholar
21. Bearden, A. J., “X-Ray Photoeffect Cross Section in Low- and Medium-Z Absorbers for the Energy Range 852eV to 40 KeV”, J. Appl. Phys., 37, 16811692, 1966.Google Scholar
22. Singer, S., “The Absorption of X-Rays by Aluminum at 0.278 KeV”, J. Appl. Phys., 38, 28972898, 1967.Google Scholar
23. Jaegle, P., Missoni, G. and Dhez, P., “Study of the Absorption of Ultrasoft X-Rays by Bismuth and Lead Using the Orbit Radiation of the Frascati Synchrotron”, Phys. Rev. Letters 18, 887–888, 1967.Google Scholar
24. Jaegle, P. and Missoni, G., “The Mass Absorption Coefficient of Gold in the Wavelength Region from 26 to 120 Å”, Camp. Rend. Acad. Sc. Paris, 262B, 7174, 1966.Google Scholar
25. Pomichev, V. A. and Lukirskii, A. P., “Absorption Coefficients of Aluminum in the 23.6 - 410 Å Range of Ultrasoft X-Radiation”, Optics and Spect. (USA), 22, 432434, 1967.Google Scholar
26. Lukirskii, A. P. and Zimkina, T. M., “Mass Absorption Coefficients of Argon and Ethyl Alcohol in the Ultrasoft X-Ray Region”, Bull. Acad. Sci., USSR, Phys. Ser. 22, 808811, 1963.Google Scholar
27. Ederer, D. L., “Photoionization of the 4d Electrons in Xenon”, Phys. Rev. Letters, 13, 760762, 1964.Google Scholar
28. Gray, L. J., “X-Ray Absorption Coefficients and Quantitative Microanalysis of Metallurgical Systems, Including Refractory Metal-Interstitial Compounds”, Ph.D. Thesis, Univ. of Illinois, Urbana, Illinois, 1968.Google Scholar
29. Schmickley, R. D. and Pratt, R. H., “K−, L−, and M-Shell Atomic Photoeffect for Screened-Potential Models”, Phys. Rev., 164, 104116, 1967.Google Scholar
30. Cooper, J. W., “Interaction Maxima in the Absorption of Soft X-Rays”, Phys. Rev. Letters, 13, 762764, 1964.Google Scholar
31. Cooper, J. W., “Photoionization from Outer Atomic Subshells. A Model Study”, Phys. Rev., 128, 681693, 1962.Google Scholar
32. Manson, S. T. and Cooper, J. W., “Photoionization in the Soft X-Ray Range: Z Dependence in a Central-Potential Model”, Phys. Rev., 165, 126138, 1968.Google Scholar
33. Rau, A. R. P. and Fano, U., “Atomic Potential Wells and the Periodic Table”, Phys. Rev., 167, 710, 1968.Google Scholar
34. Gray, L. J., to be published.Google Scholar
35.We are grateful to Professor W. S. Williams of the Univ. of Illinois, Materials Research Laboratory, for providing both the samples and the results of the general chemical analysis.Google Scholar
36. Philibert, J., “A Method for Calculating the Absorption Correction in Electron Probe Microanalysis”, in H. H. Pattee, V. E. Cosslett and A. Engstrom, Editors, X-Ray Optics and Microanalysis, Academic Press, New York, 1963, p. 379392.Google Scholar
37. Reed, S. J. B., “Characteristic Fluorescence Corrections in Electron Probe Microanalysis”, Brit. J. Appl. Phys., 16, 913926, 1965.Google Scholar
38. Duncumb, P. and Reed, S. J. B., “The Calculation of Stopping Power and Backscatter Effects in Electron Probe Microanalysis”, Tube Investments Research Laboratories Technical Report No. 221, Hinxton Hall, Cambridge, England, 1967.Google Scholar