Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-23T12:19:00.775Z Has data issue: false hasContentIssue false

Lattice Spacings in Some Transition Metal Terminal Solid Solutions

Published online by Cambridge University Press:  06 March 2019

Henry Chessin
Affiliation:
United States Steel Corporation Monroevitle, Pennsylvania
Sigurds Arajs
Affiliation:
United States Steel Corporation Monroevitle, Pennsylvania
D. S. Miller
Affiliation:
United States Steel Corporation Monroevitle, Pennsylvania
Get access

Abstract

The lattice parameter-composition curves for several nickel solid solutions and for some chromium and. iron solid solutions are discussed. It is shown that the size effect may be the predominating influence on the change of lattice parameters in these systems. This is demonstrated by comparing observed and calculated data employing various methods. A new scheme for evaluating the atomic size in solid solutions is proposed, based on regarding the atom, as an incompressible core surrounded by a smeared-out compressible volume. The suggestion that classical elasticity theory may be used as a basis for understanding the size effect in solid solutions is justified by examination of the Ag-Pd system for additions of Ag from 0 to 100 at. %.

Type
Research Article
Copyright
Copyright © International Centre for Diffraction Data 1962

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Arajs, Sigurds, Colvin, R. V., Chessin, Henry, and Peck, J. M., J. Appl. Phys. 32: 857, 1961.Google Scholar
2. Chessin, Henry, Arajs, Sigurds, Colvin, R. V., and Miller, D. S., J. of Phys. and Chem. of Solids (submitted for publication).Google Scholar
3. Chessin, Henry and Arajs, Sigurds (to be published).Google Scholar
4. Hume-Rothery, W. and Coles, B. R., Advances in Physics, Vol. 3, 1954, p. 150.Google Scholar
5. Flinn, P. A., Averbach, B. L., and Cohen, M., Acta Met. 1: 664, 1953.Google Scholar
6. Averbach, B. L., Flinn, P. A., and Cohen, M., Acta Met. 2: 92, 1954.Google Scholar
7. Averbach, B. L., “Theory of Alloy Phases,” Am. Soc. Metals, Cleveland, 1956.Google Scholar
8. Warren, B. G. and Averbach, B. L., “Modern Research Techniques in Physical Metallurgy,” Am. Sac, Metals, Cleveland, 1953.Google Scholar
9. Hume-Rothery, W. and Raynor, G. V., “The Structure of Metals and Alloys,” Inst. Metals (London), 1954.Google Scholar
10. Raynor, G. V., Trans. Faraday Soc. 45: 698, 1949.Google Scholar
11. Goldschmidt, V. M., Z. Phys. Ckem. 133: 397, 1928.Google Scholar
12. Pauling, L., J. Am. Chem. Soc. 69: 542, 1947.Google Scholar
13. Swanson, H. E. and Tatge, E., Nat. Bar. Standards Circ. 539 1: 18, 1953.Google Scholar
14. Strauraanis, M. E. and Aka, E. Z., J. Appl. Phys. 23: 330, 1952.Google Scholar
15. Köster, W. and Franz, H., Metals Rev. 6:1, 1961.Google Scholar
16. Eshelby, J. D., in Solid State Physics, Vol. 3, Academic Press, Inc., New York, 1956, p. 79; J. Appl. Phys. 25: 255, 1954.Google Scholar
17. Miller, P. H. and Russell, B. R., J. Appl. Phys. 23: 1163, 1952.Google Scholar
18. Seitz, F., Rev. Mod. Phys. 18: 384, 1946.Google Scholar
19. Friedel, J., Phil. Mag. 46: 514, 1955 ; Advances in Physics, Vol. 3, 1954, p. 446.Google Scholar
20. Pearson, W. B., Can, J. Phys. 35: 358, 1957.Google Scholar
21. Pearson, W. B. and Thompson, L. T., Can. J. Phys. 35: 349, 1957.Google Scholar
22. Pearson, W. B., Lattice Spacmgs and Structures of Metals and Alloys, Pergaroon Press, Inc., New York, 1958.Google Scholar
23. Coles, B. R., J. Inst. Metals 84: 346, 1955-1956.Google Scholar
24. Massalski, T. E. and King, H. W., Progressin Materials Science 10 (1) ; 1961.Google Scholar
25. Sivertsen, J. M. and Nicholson, M. E., Progress in Materials Science 9 (5): 1961.Google Scholar
26. Parrish, W., Acta Cryst. 13: 838, 1960.Google Scholar
27. Sutton, A. L. and Hume-Rothery, W., Phil. Mag. 46: 1295, 1955.Google Scholar
28. Coles, B. R., Proc. Phys. Soc. (London) B65: 221, 1952.Google Scholar
29. Taylor, J. C. and Coles, B. R., Phys. Rev. 102: 57, 1956.Google Scholar
30. Hashin, Z., Bull. Research Council Israel, Sec. C5: 46, 1955.Google Scholar