Published online by Cambridge University Press: 06 March 2019
The silicon diode array camera tube, recently developed for PICTURFPHONE® service, was modified to permit X-ray imaging. High quantum efficiency is attained without the use of a phosphor screen, since each photon absorbed in the silicon target generates several hundred hole-electron pairs for each keV of its energy, most of which can he usefully collected. The sensitivity and resolution are adequate to allow a continuous television display of the diffracted intensity as a crystal is oriented. Particular advantages of this technique include; high resolution (< 25 μm); electronically variable magnification; direct oscilloscope measurement of X-ray spot Intensity profiles and relative spot intensities because signal current is directly proportional to photon flux; high sensitivity in the range of 0.6 to 5.0 Å, potentially limited only "by counting statistics; integration times variable from < 1/60 second to minutes; and expected low cost, since the camera tube has no complicated electron imaging, and is directly interchangeable Mith a standard television vidicon. Applications which are described include crystal orientation and X-ray topography.