Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-16T15:25:44.285Z Has data issue: false hasContentIssue false

Generation of Crystallographic Packing Candidates with Fixed Helical Symmetry and Axial Advance: Application to Pi-2 Polyimide

Published online by Cambridge University Press:  06 March 2019

J. M. Waller
Affiliation:
Department and Institute of Polymer Science The University of Akron Akron, OH 44325-3909, USA
R. K. Eby
Affiliation:
Department and Institute of Polymer Science The University of Akron Akron, OH 44325-3909, USA
Get access

Abstract

A normal coordinate approach was used to generate ciystallographic packing candidates of a multitorsional polyimide synthesized from 3,3′,4,4′-benzophenonetetracarboxylic acid (BTDA) and 2,2-dimethyl-l,3-(4-aminophenoxy)propane (DMDA) (PI-2). Candidates were obtained under conditions of fixed axial advance of 24.6 Å per monomer, and imposed 2/1 helical or 1/0 transiational symmetry, consistent with the observed WAXD meridional layer line spacing [1]. The ability of comb in atori ally generated torsional states to adopt the desired geometry was examined. Necessary corrections to die conformational parameter equations originally derived by Kusanagi, et al. [2|, have been made. The procedure described allowed crystallographic conformations satisfying explicit geometric and MM3 intramolecular energy criteria to be generated for a linear multitorsional polyimide prior to the application of crystallographic screening or refinement procedures.

Type
VI. Polymer Applications of X-Ray Scattering
Copyright
Copyright © International Centre for Diffraction Data 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Cheng, S., Mittieman, M., Janimak, J., Shen, D., Chalmers, T., Lien, H., Tso, C., Gabori, P., Harris, F. Polymer International 29, 201 (1992).Google Scholar
2. Kusanagi, R., Tadokoro, H., Chatani, Y., Suehiro, K., Macromolecules 10, 405 (1977).Google Scholar
3. Arnott, S., Wonacott, A., Polymer 7, 157 (1966).Google Scholar
4. Matzat, E., Acta CrysL B28, 415 (1972).Google Scholar
5. Takahashi, N., Yoon, D. Y., Parrish, W., Macromolecules 17, 2583 (1984).Google Scholar
6. Natta, G., Corradmi, P., J. Polym. Sci. 39, 29 (1959).Google Scholar
7. Waller, J.M., Eby, R.K., Polymer 33, 5334 (1992).Google Scholar
8. Vainshtein, B.K., in Diffraction of X-rays by Chain Molecules; Elsevier: Amsterdam, 1966, pp 5362.Google Scholar
9. Corradini, P., in The Stereochemistry of Macromolecules, Volume 3; Ketley, A.D., Ed., Marcel Dekker: New York, 1968, Chapter 1.Google Scholar
10. Clark, E. S., Weeks, J. J., Eby, R. K., in Fiber Diffraction Methods; French, A. D., Gardner, K. H., Eds., ACS Symposium Series 141, American Chemical Society; Washington, DC, 1980, Chapter 10.Google Scholar
11. Conte, G., D'llario, L., Pavel, N., J. Polym. Sci., Polym. Phys. Ed. 21, 1553 (1976).Google Scholar
12. Zubkov, V. A., Birshtein, T.M., Milevskaya, I. S., Polym. Sci. U.S.S.R. 17, 2252 (1975).Google Scholar
13. Zubkov, V.A., Birsfitem, T. M., Mrlerakaya, L. S., J. Molec. Struct. 27, 139 (1975).Google Scholar
14. Eyring, H., J. Chem. Phys. 36, 426 (1936).Google Scholar
15. Shimanouchi, T., Mizushima, S.,J. Chem. Phys. 23, 707 (1955).Google Scholar
16. Miyazawa, T., J. Polym. Sci. 55, 215 (1961).Google Scholar
17. Zhang, R., The University of Akron, personal communication, 1993.Google Scholar
18. Cochran, W., Crick, F.H. C, Vand, V.,Acta Cryst. A5, 581 (1952).Google Scholar
19. Sorensen, R.A., Liau, W.B., Boyd, R. H., Macromolecules 21, 194 (1985).Google Scholar
20. Smith, P.J., Arnott, S., Acta Cryst. A34, 3 (1978).Google Scholar